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  Learning and Predictability via Technical Analysis: Evidence from 
Bitcoin and Stocks with Hard-to-Value Fundamentals  

   
What predicts returns on assets with “hard-to-value" fundamentals, such as Bitcoin and 

stocks in new industries? We propose an equilibrium model that shows how rational learning can 
generate return predictability through technical analysis. We document that ratios of prices to their 
moving averages forecast daily Bitcoin returns in- and out-of-sample. Trading strategies based on 
these ratios generate an economically significant alpha and Sharpe ratio gains relative to a buy-and-
hold position. Similar results hold for small-cap, young-firm, and low-analyst-coverage stocks as 
well as NASDAQ stocks during the dotcom era. 

 
 
 JEL classification: G11, G12, G14 
Keywords: Bitcoin, cryptocurrency, technical analysis, learning, return predictability 
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Cryptocurrencies’ fundamental source of intrinsic value remains unclear. Market observers disagree 

about their ability to serve as a currency and their currency status faces significant regulatory risk. Moreover, 

unlike cash flows from more typical financial assets such as stocks and bonds, cryptocurrencies’ fundamentals 

have few, if any, publicly available predictive signals, such as analyst coverage and accounting statements. 

We refer to fundamentals with these characteristics of uncertainty, opacity, disagreement, and lack of 

predictive information as “hard-to-value". In this paper, we theoretically and empirically examine the asset-

pricing implications of having such fundamentals. While cryptocurrencies are an ideal setting to investigate 

this asset-pricing property, this property is more general as the fundamentals of most assets are hard-to-value 

to varying degrees. For example, fundamentals of young small-cap stocks in new industries are harder to 

value than those of large-cap stocks in established industries. 

We propose a continuous-time equilibrium model in which two rational and risk-averse investors 

costlessly trade a risky asset with hard-to-value fundamentals. This asset produces a stream of benefits called 

a “convenience yield" that grows at an unobserved and stochastically evolving rate. Investors have different 

priors and, aside from the convenience yield itself, observe no other signal about the yield’s latent growth 

rate. The risky asset can be interpreted as a cryptocurrency where the convenience yield represents the flow 

of benefits from usage as a medium of exchange or another asset such as a stock whose dividends or earnings 

are hard-to-value. In the process of Bayesian learning, investors update their beliefs about the growth rate in 

the direction of shocks to the convenience yield. However, the initial value of the growth rate is uncertain and 

these shocks are only imperfectly correlated with unobservable shocks to this rate, causing investors to only 

gradually move away from their priors when updating beliefs—and consequently valuations—resulting in 

price drift. Specifically, returns are predictable by ratios of prices to their moving averages (MAs), which 

summarize the beliefs of investors about the expected convenience yield growth rate. Moreover, because of 

this predictability, it is optimal for investors to use the price-to-MA ratios in trading. As far as we know, this 

is the first fully rational general equilibrium model with endogenous use of technical analysis.1 

                                                      
1 Treynor and Ferguson (1985), Brown and Jennings (1989), Cespa and Vives (2012), Brock et al. (1992), 
Hong and Stein (1999), Lo et al. (2000), Chiarella et al. (2006), Edmans et al. (2015), and Han et al. (2016), 
among others, show that past prices can predict returns and trading based on technical indicators,  
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Our model contributes to several strands of literature. It provides a fully rational and endogenous 

justification for technical analysis and time-series return predictability by past prices, which most 

practitioners and prior studies justify with irrational forces, such as sentiment, overconfidence, or under-

reaction (e.g., Barberis et al. ,1998; Daniel et al., 1998; Hong and Stein, 1999). 2 Moreover, prior 

models with technical traders assume that a subset of investors use exogenously given technical 

trading rules (e.g., Hong and Stein, 1999; Han et al., 2016). Our model also proposes a new 

mechanism relative to the few rational models that generate return predictability by past prices. For 

example, in prior rational expectations equilibrium models with learning, price drift can arise, but 

only given higher-order disagreement between traders (e.g., Banerjee et al., 2009). Without this 

disagreement, agents infer each other’s private signals immediately via the price, precluding a gradual 

drift toward the fundamental value. In our model, drift does not require disagreement, only Bayesian 

learning and the hard-to-value property of fundamentals. Johnson (2002) also generates price drift for 

stocks with time-varying dividend growth rates, which are analogous to our convenience yield. 

However, Johnson does not consider general equilibrium effects, learning, or endogenous technical 

trading rules.  

In the empirical portion of the paper, we investigate whether the predictability of returns by price-to-

MA ratios holds for Bitcoin and several equity portfolios with plausibly hard-to-value fundamentals. We find 

that daily Bitcoin returns are predictable in- and out-of-sample by ratios of prices to their 1- to 20-week MAs. 

Consistent with our model, this predictability strengthens when uncertainty decreases as investors learn about 

the dynamics of the latent growth of the convenience yield. Indeed, we find a negative interaction between 

the price-to-MA ratio and conditional return variance, a proxy for uncertainty, in return-forecasting 

regressions. To assess the economic significance of this Bitcoin-return predictability to investors, we form a 

trading strategy that goes long Bitcoin when the price is above the MA, and long cash otherwise. We find that 

these trading strategies significantly outperform the buy-and-hold benchmark, producing large alphas and 

increasing Sharpe ratios by 0.2 to 0.6. These results are similar across both halves of the sample. The MA 

                                                      
especially the moving averages of prices, can be profitable in the stock market. Schwager (1989) and Lo 
and Hasanhodzic (2009) further provide insightful comments about the effectiveness of technical strategies 
from top practitioners. 
2 Perhaps the most widely used investments textbook, Bodie et al. (2014), places technical analysis in a 
chapter on “behavioral finance”. 
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strategies also outperform the buy-and-hold benchmark when applied to two other cryptocurrencies, Ripple 

and Ethereum, Bitcoin’s two largest competitors. Indeed, we find a negative interaction between the price-

to-MA ratio and conditional return variance, a proxy for uncertainty, in return-forecasting regressions. 

To assess the economic significance of this Bitcoin-return predictability to investors, we form a trading 

strategy that goes long Bitcoin when the price is above the MA, and long cash otherwise. We find that 

these trading strategies significantly outperform the buy-and-hold benchmark, producing large alphas 

and increasing Sharpe ratios by 0.2 to 0.6. These results are similar across both halves of the sample. 

The MA strategies also outperform the buy-and-hold benchmark when applied to two other 

cryptocurrencies, Ripple and Ethereum, Bitcoin’s two largest competitors. 

Next, we evaluate whether returns on the NASDAQ portfolio are predictable by price-to-MA 

ratios during five- and ten-year windows (1998–2002 and 1996–2005, respectively) that includes the 

dot.com boom-and-bust of the early 2000’s. In this period, many emerging technologies associated with 

the Internet introduced fundamentals that, at the time, were considered difficult to value. We show that 

our MA trading strategies applied to the NASDAQ generate significant alpha and Sharpe ratio gains (of 

0.2 to 0.5) relative to the buy-and-hold benchmark in this time period.  Moreover, the gains of the MA 

strategies steadily decline in the years following this period as fundamentals presumably became easier 

to value. We also apply our MA strategies to portfolios formed on widely used proxies for information 

availability: size, age, and analyst coverage.  Consistent with our model, we find that over the 1963 to 

2018 time period, the price-to-MA ratios positively and significantly forecast returns on small-cap and 

young-stock portfolios, with negative and insignificant predictability for large-cap and old-stock 

portfolios. Moreover, in the 1985 to 2018 time-period during which analyst forecasts are available, we 

find that return predictability by the price-to-MA ratios decreases with both size and analyst coverage. 

Our model also suggests that trading arises from differences in the MAs across investors. 

Consistent with this implication, we show that proxies for disagreement across MA horizons and total 

turnover implied by the various MA strategies are significantly and positively associated with Bitcoin 

trading volume.  

Overall, consistent with our model, the results in this paper demonstrate that for Bitcoin and 

stocks with hard-to-value fundamentals, price drift exists and price-to-moving average ratios predict 
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returns. 

 The rest of the paper is organized as follows. Section II discusses the model and related literature.  

Section III describes the data. Section IV reports empirical results, and Section V concludes. 

 
2| THE MODEL AND RELATTED LITERAURE 
 
2.1 The Model 

 
In this section, we present a rational equilibrium asset-pricing model that examines the implications of 

having hard-to-value fundamentals. In the model, investors continuously trade two assets for no cost: 

a risky asset called “Bitcoin” with one unit of net supply and one risk-free asset with zero net 

supply.3 

Assumption 1. Each unit of Bitcoin provides an observable stream of convenience yield 𝛿𝛿𝑡𝑡 , that 

grows according to:4 𝑑𝑑𝛿𝛿𝑡𝑡
𝛿𝛿𝑡𝑡

= 𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝛿𝛿𝑑𝑑𝑍𝑍1𝑡𝑡, (1) 

where the drift, 𝑋𝑋𝑡𝑡, is unobservable, and evolves according to:   

 𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜆𝜆(𝑋𝑋� − 𝑋𝑋𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜌𝜌𝜎𝜎𝑋𝑋𝑑𝑑𝑍𝑍1𝑡𝑡 + �1 − 𝜌𝜌2𝜎𝜎𝑋𝑋𝑑𝑑𝑍𝑍2𝑡𝑡 , (2) 

where 𝜎𝜎𝛿𝛿 > 0, 𝜆𝜆 > 0, 𝑋𝑋� > 0, 𝜎𝜎𝑋𝑋 > 0, and 𝜌𝜌 ∈ [−1,1] are all known constants and (𝑍𝑍1𝑡𝑡 ,𝑍𝑍2𝑡𝑡) is a two-

dimensional standard Brownian motion.  

While Bitcoin does not provide any cash flows, we assume it must offer some flow of benefits, which 

we call “convenience yield", 𝛿𝛿𝑡𝑡, to its owners, although there is significant and time-varying uncertainty 

about how these benefits will evolve. For example, holding Bitcoin can facilitate transactions (particularly 

illicit ones), hedge hyper-inflation risk caused by political turmoil, and serves as a store of value. As a result, 

investors buy it trading off convenience yield and risks. For other financial assets like stocks and bonds, the 

                                                      
3 Obviously, in the real world, there are other risky assets in the economy. As a result, our model will not accurately 
explain variation in the risk-free rate. In a single-risky-asset general equilibrium model, the risk-free rate will 
necessarily have non-trivial volatility. However, adding other assets would not change our model's main point that 
moving average rules can be optimal for trading Bitcoin due to learning. More generally, it is possible to add features 
to correct counterfactual predictions about the risk-free rate, but only at the expense of parsimony. 
 
4One of the features of Bitcoin that are different from traditional assets is that the supply is time varying, 
because it depends on how much Bitcoin has been mined. However, incorporating this into the model would 
make the analysis more complicated without changing the main mechanism behind our results. 
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convenience yield can be interpreted as a dividend, earnings, or interest paid to their owners. The state 

variable 𝑋𝑋𝑡𝑡 is a catch-all for whatever state variable affects the convenience yield of an asset. For example, 

in the case of Bitcoin, the state variable may capture uncertain regulatory risks, the likelihood of hyper-

inflation in some countries, the popularity of competing cryptocurrencies, and the related technology (e.g., 

block-chain update speed) advancement. In the case of stocks, the 𝑋𝑋𝑡𝑡 can represent the aggregate of all 

variables that impact mean dividend growth. 

On the investors, we make two assumptions: 

Assumption 2  There are two types of investors who differ by their priors about the state variable 

𝑋𝑋𝑡𝑡 and possibly initial endowment of Bitcoin.5 Type 𝑖𝑖 investor is endowed with 𝜂𝜂𝑖𝑖 ∈ (0,1) units of 

Bitcoin with 𝜂𝜂1 + 𝜂𝜂2 = 1 and has a prior that 𝑋𝑋0 is normally distributed with mean 𝑀𝑀𝑖𝑖(0) and variance 

𝑉𝑉𝑖𝑖(0), 𝑖𝑖 = 1,2.  

Assumption 3  All investors have log preferences over the convenience yield provided by Bitcoin 

with discount rate 𝛽𝛽 until time 𝑇𝑇. Specifically, the investor’s expected utility is  

 𝐸𝐸 ∫𝑇𝑇0 𝑒𝑒−𝛽𝛽𝛽𝛽log𝐶𝐶𝑡𝑡𝑖𝑖𝑑𝑑𝑑𝑑, 

where 𝐶𝐶𝑡𝑡𝑖𝑖 denotes the convenience yield received by a Type 𝑖𝑖 investor from owning Bitcoin.  

Intuitively, the heterogeneous priors across agents captures the fact that investors have significantly 

different expectations about how Bitcoin’s fundamentals will grow in the future. Assuming log preferences 

allows for relatively simple and transparent functional forms without altering what would be our main 

prediction in the case of higher risk aversion. 

Denote by 𝐹𝐹𝑡𝑡𝑖𝑖  the filtration at time 𝑡𝑡 generated by the Bitcoin price process {𝐵𝐵𝑠𝑠} and the prior 

(𝑀𝑀𝑖𝑖(0),𝑉𝑉𝑖𝑖(0)) for all 𝑠𝑠 ≤ 𝑡𝑡 and each investor 𝑖𝑖 = 1, 2. Because agents observe only one shock, 𝐹𝐹𝑡𝑡𝑖𝑖 turns 

out to be equivalent to the filtration based on the convenience yield process {𝛿𝛿𝑠𝑠} in lieu of {𝐵𝐵𝑠𝑠}. Further let 

𝑀𝑀𝑡𝑡
𝑖𝑖 ≡ 𝐸𝐸[𝑋𝑋𝑡𝑡|𝐹𝐹𝑡𝑡𝑖𝑖] be the conditional expectation of 𝑋𝑋𝑡𝑡 given 𝐹𝐹𝑡𝑡𝑖𝑖. While many risky assets have uncertain and 

                                                      
5Since investors can continuously observe 𝛿𝛿𝑡𝑡, they can directly calculate the volatility 𝜎𝜎𝛿𝛿  and therefore there is no 
disagreement about the volatility. 
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stochastically evolving fundamental growth rates, the definition of the filtration and 𝑀𝑀𝑡𝑡 captures the essence 

of the “hard-to-value" property. That is, Bitcoin investors must filter out the state variable from, at most, the 

history of convenience yields, and they have initial disagreement about what the convenience yield growth 

rate is. In contrast, assets with less hard-to-value fundamentals, such as large-cap stocks in established 

industries, have other signals that help forecast fundamentals, such as thoroughly vetted accounting 

statements, established correlations with macroeconomic conditions, and analyst coverage. 

 

Proposition 1  In equilibrium in the economy defined by Assumptions 1–3:  

 𝑑𝑑𝐵𝐵𝑡𝑡
𝐵𝐵𝑡𝑡

= �(𝛽𝛽 + 𝑀𝑀𝑡𝑡
𝑖𝑖) − 𝛿𝛿𝑡𝑡

𝐵𝐵𝑡𝑡
� 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝛿𝛿𝑑𝑑𝑍̂𝑍1𝑡𝑡𝑖𝑖 , (3) 

 the fraction of wealth invested in the Bitcoin by Investor 1 is   

 1 + 𝛼𝛼𝑡𝑡
1+𝛼𝛼𝑡𝑡

𝑀𝑀𝑡𝑡
1−𝑀𝑀𝑡𝑡

2

𝜎𝜎𝛿𝛿
2 , (4) 

 and by Investor 2 is   

 1 − 1
1+𝛼𝛼𝑡𝑡

𝑀𝑀𝑡𝑡
1−𝑀𝑀𝑡𝑡

2

𝜎𝜎𝛿𝛿
2 , (5) 

 where   

 𝑀𝑀𝑡𝑡
𝑖𝑖 = ℎ𝑖𝑖(𝑡𝑡) + 𝑓𝑓𝑖𝑖(0, 𝑡𝑡)log 𝐵𝐵𝑡𝑡

𝐵𝐵0
+ (𝑓𝑓𝑖𝑖(𝑡𝑡, 𝑡𝑡) − 𝑓𝑓𝑖𝑖(0, 𝑡𝑡))�log𝐵𝐵𝑡𝑡 −

∫𝑡𝑡0 𝑔𝑔
𝑖𝑖(𝑢𝑢,𝑡𝑡)log𝐵𝐵𝑢𝑢𝑑𝑑𝑑𝑑

∫𝑡𝑡0 𝑔𝑔
𝑖𝑖(𝑢𝑢,𝑡𝑡)𝑑𝑑𝑑𝑑

� (6) 

is the 𝑖𝑖th investor’s conditional expectation, 𝐸𝐸[𝑋𝑋𝑡𝑡|𝐹𝐹𝑡𝑡𝑖𝑖], ℎ𝑖𝑖(. ), 𝑓𝑓𝑖𝑖(. , . ), and 𝑔𝑔𝑖𝑖(. , . ) are as defined in the 

Appendix for 𝑖𝑖 = 1,2, and 𝛼𝛼𝑡𝑡 is as defined in Appendix (8), denoting the ratio of the marginal utility of type 

1 investor to that of type 2 investor. In addition, if  

 𝑉𝑉𝑖𝑖(0) ≤ 𝜌𝜌𝜎𝜎𝑋𝑋𝜎𝜎𝛿𝛿 + 𝜎𝜎𝑋𝑋
2

𝜆𝜆
, (7) 

 then  

 𝑔𝑔𝑖𝑖(𝑢𝑢, 𝑡𝑡) > 0,𝑓𝑓𝑖𝑖(𝑡𝑡, 𝑡𝑡) − 𝑓𝑓𝑖𝑖(0, 𝑡𝑡) > 0,∀𝑢𝑢 > 0, 𝑡𝑡 > 0. (8) 

 

 Proof.  See Appendix. 

2.2|  Discussion and Related Literature 
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There are two important implications of Proposition 1. First, under Condition (7), the cum-yield Bitcoin 

return is positively predictable by “ratios" of prices to their moving averages. Intuitively, because of 

learning, investors only gradually update their priors in the direction of shocks to the convenience yield, 

resulting in a price drift. If agents had access to other predictive signals, as they would with assets that are 

not “hard to value", they would incorporate these signals and the predictability of prices by moving averages 

would no longer be guaranteed.6 Second, because of the predictive power of the price-to-MAs ratios, every 

investor’s trading strategy depends on the moving averages.7 The proof of Proposition 1 shows that learning 

drives the entire return predictability in a way that is unaffected by the existence of multiple traders, which 

serves only to create trading. As far as we know, this is the first equilibrium model that justifies the use of 

moving averages of prices in guiding trading. 

  Existing models generate price drift via different mechanisms, most of which are based on 

behavioral biases, such as under- or over-reaction. On the rational side, under certain circumstances, 

rational expectations equilibrium (REE) models with learning, beginning with the seminal work of 

Grossman (1976) and Hellwig (1980), also predict price drift. While agents in our model observe a 

common signal, these models feature agents who receive private signals about fundamental value, and 

they infer each other’s’ signals from the price. As discussed in Banerjee et al. (2009), price drift in these 

models requires higher order disagreement to slow down the rate at which agents incorporate each 

others’ signals in their private valuations. In contrast, agents in our model observe a common signal, 

and price drift does not depend on multiple traders. Cochrane et al. (2008) also shows that price drift 

can arise under certain conditions when multiple risky assets exist. 

On the irrational side, many studies try to explain price drift, sometimes called time-series (TS) 

                                                      
6 One can easily extend this model to include an additional signal about the fundamental. In this extension, the traders 
would still use MAs as a signal to trade. The less precise the additional fundamental signal, the more weight traders 
would place on the price-to-MAs. Thus, the predictability of returns by the price-to-moving-average ratios should be 
stronger the greater the degree to which fundamentals are hard-to-estimate. 
7 It can be shown that Condition (7) is guaranteed to hold eventually almost surely because 𝜌𝜌𝜎𝜎𝑋𝑋𝜎𝜎𝛿𝛿 + 𝜎𝜎𝑋𝑋

2

𝜆𝜆
 is greater 

than the steady-state level to which the conditional variance, 𝑉𝑉𝑖𝑖(𝑡𝑡), monotonically converges.  In addition, note that 
even though 𝑉𝑉𝑖𝑖(0) can be large for assets with highly uncertain payoffs, the right hand side of the inequality can also 
be large for these assets. So Condition (7) can be satisfied by even an asset that has a highly uncertain values before 
reaching the steady state. With 𝑔𝑔𝑖𝑖(𝑢𝑢, 𝑡𝑡) > 0,  
                              ∫𝑡𝑡0 𝑔𝑔

𝑖𝑖(𝑢𝑢, 𝑡𝑡)log𝐵𝐵𝑢𝑢𝑑𝑑𝑑𝑑/∫𝑡𝑡0 𝑔𝑔
𝑖𝑖(𝑢𝑢, 𝑡𝑡)𝑑𝑑𝑑𝑑,  

is a weighted moving average of log Bitcoin prices. 
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momentum (e.g., Moskowitz et al., 2012, and Huang et al., 2019), and the related cross-sectional (CS) 

momentum phenomenon of Jegadeesh and Titman (1993). One explanation proposed by this literature 

is sustained over-reaction, which can be caused, for example, by positive feedback trading (DeLong et al., 

1990); Hong and Stein (1999), over-confidence and self-attribution confirmation biases (Daniel, 

Hirshleifer, and Subrahmanyam, 1998), herding (Bikhchandani et al., 1992), or general sentiment 

(Baker and Wurgler, 2006, 2007). A second explanation is under-reaction, which can be caused, for 

example, by conservatism bias (Barberis et al., 1998), trend following (Hong and Stein, 1999), and 

gradual diffusion of information (Hong and Stein, 1999; Hong et al., 2000). In our model, the reaction 

of investors to signals resembles “under-reaction”, but not because of behavioral biases. With hard-

to-value fundamentals, investors rationally weight priors and incoming signals that feature 

uncertainty, which leads to price drift, but this price drift does not represent mispricing. 

Moskowitz et al. (2012) find that TS momentum can explain CS momentum empirically 

and argue that many explanations for CS momentum are really explanations of TS momentum. 

Thus, our model’s setting and prediction seem intuitively related to the finding that CS momentum 

and post-earnings announcement drift are stronger when information uncertainty is higher (e.g, 

Zhang, 2006). Presumably, information uncertainty is highly correlated with the degree to which 

fundamentals are hard-to-value, and therefore we would expect to see greater price drift in 

segments with high information uncertainty. Moreover, foreign investors, who presumably lack the 

information of domestic investors, rely relatively heavily on CS momentum strategies (e.g., Choe 

et al.,  1999). 

The second implication of Proposition 1 is that the optimal trading strategy is a function of       

the MAs and trading is driven by a difference in investor beliefs.  Thus, our model justifies one of the 

most widely used class of technical analysis strategies, those based on MAs of prices. No prior rational 

equilibrium endogenously generates such a practice. For example, early theoretical study of Zhu and 

Zhou (2009) takes the MA rule as a given strategy for rational investors. Recently, Han et al. (2016) 

propose a model with technical traders, but the traders use a price-to-moving average ratio rule 

exogenously. In contrast, our paper seems the first that endogenizes MA trading in the model.  

 
2.3| Cyptocurrency Literature 

 
Our paper contributes to the growing literature on the economics of cryptocurrencies and the associated 
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blockchain technology. Relatively few papers in this vein study asset-pricing properties. Among them, 

Liu and Tsyvinski (2018) document a TS momentum effect in cryptocurrency returns, but, unlike our 

paper, do not provide a theory to rationalize this phenomenon. Using the Cagan model of 

hyperinflation, Jermann (2018) empirically examines the relative contribution of shocks to volume and 

velocity on variation in Bitcoin’s price. Jermann finds that most of the variation in Bitcoin’s price is 

attributable to volume shocks, consistent with stochastic adoption dominating technology innovations. 

Dwyer (2015) explains how cryptocurrencies can have positive value given limited supply. Athey et al. 

(2016), Bolt and van Oordt (2016), and Pagnotta and Buraschi (2018)  all provide models in which the 

value of cryptocurrencies depends on some combination of (i) usage and the degree of adoption, (ii) 

the scarcity of Bitcoin, and (iii) the value of anonymity. 

Our model differs from those used by prior studies in at least two important respects. First, our 

model does not require Bitcoin to be interpreted as a currency per se. We do not directly specify 

currency-related determinants of its value (e.g. (i)–(iii) above). Rather, we model the flow of utility- 

providing benefits as a random state variable, which we call a “convenience yield”, but admits a more 

general interpretation. This generality is important because some market participants argue that Bitcoin 

is better thought of as a speculative asset than a currency (e.g., Yermack, 2013). For example, Bitcoin’s 

high volatility eliminates its use a store of value, a defining feature of money. Second, the papers cited 

above all assume full information, however, our model features learning. This feature is critical given 

the lack of agreement on what determines the value of Bitcoin.8 The learning aspect of our model also 

helps us to answer novel questions relative to the prior studies such as: What predicts Bitcoin returns? 

Relative to asset pricing inquiries like ours, most of the literature on the economics of Bitcoin seeks 

to identify problems, implementation issues, and uses of cryptocurrencies.  Böhme et al. (2015) discuss the 

virtual currency’s potential to disrupt existing payment systems and perhaps even monetary systems. Harvey 

(2017) describes immense possibilities for the future for Bitcoin and its underlying blockchain technology. 

Balvers and McDonald (2018) describe conditions and practical steps necessary for using blockchain 

                                                      
8 For instance, in a Bloomberg interview on December 4, 2013, Alan Greenspan stated: “You have to really stretch 
your imagination to infer what the intrinsic value of Bitcoin is. I haven't been able to do it. Maybe somebody else can.” 
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technology as a global currency.  Easley et al. (2019) provide a model of Bitcoin trading fees. Yermack 

(2017) discusses use of Blockchain for trading equities and the corresponding governance implications. 

Gandal et al. (2018) and Griffin and Shams (2018) document Bitcoin price manipulation. Biais et al. (2018) 

model the reliability of the blockchain mechanism. Catalini and Gans (2017) discuss how blockchain 

technology will shape the rate and direction of innovation. Chiu and Koeppl (2017) study the optimal design 

of cryptocurrencies and assess quantitatively how well such currencies can support bilateral trade. Cong and 

He (2018) model the impact of blockchain technology on information environments.  Fernández-Villaverde 

and Sanches (2017) model competition among privately issued currencies. Foley et al. (2018) document that 

a large portion of Bitcoin transactions represents illegal activity. Huberman et al. (2017) model fees and 

self-propagation mechanism of the Bitcoin payment system. Malinova and Park (2017) model the use of 

blockchain in trading financial assets. Saleh (2017) examines economic viability of blockchain price-

formation mechanism. Prat and Walter (2016) show theoretically and empirically that Bitcoin prices forecast 

Bitcoin production. Krueckeberg and Scholz (2018) argue that Bitcoin may qualify as a new asset class. 

3| DATA 

 
Bitcoin trades continuously on multiple exchanges around the world. We obtain daily Bitcoin prices 

from the news and research site Coindesk.com, which is now standard in academic and professional 

publications such as the Wall Street Journal, over the sample period July 18, 2010 (first day available) 

through June 30, 2018. Starting July 1, 2013, Coindesk reports a Bitcoin price equal to the average of 

those listed on large high-volume high-liquidity exchanges. Prior to July 2013, Coindesk reported the 

price from Mt. Gox, an exchange that handled most of the trading volume in Bitcoin at the time.9 We 

also obtain data on two  other cryptocurrencies, Ripple (XRP) and Ethereum (ETH), from 

coinmarketcap.com.  These two currencies are the largest competitors to Bitcoin by market cap, but 

are only available over shorter samples (August 4, 2013–June 30, 2018 for XRP, and August 8, 2015–

June 30, 2018 for ETH). 

We obtain daily risk-free rate, market excess return (𝑀𝑀𝑀𝑀𝑀𝑀), and returns on three Fama and French 

(1993) size portfolios from the website of Kenneth French. The three size portfolios, “small", “medium", 

                                                      
9 For details on the history of the Bitcoin market, see Eha (2017). 
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and “big", are based on the NYSE 30%- and 70%-iles of market capitalization at the end of each month. To 

measure the risk-free rate on weekends, we use the most recently available one-day risk-free rate. The 

average risk free rate over this time (see below) is multiple orders of magnitude smaller than the average 

Bitcoin return over this time so our risk-free rate assumptions can not have an economically meaningful 

impact on our results. We obtain individual stock data from CRSP and analyst coverage from IBES. We 

obtain daily prices and total returns on the NASDAQ total return index from Bloomberg. We obtain daily 

levels of the CBOE implied volatility index (𝑉𝑉𝑉𝑉𝑉𝑉), 3-month and 10-year Treasury yields (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝐿𝐿𝐿𝐿𝐿𝐿, 

respectively), and Moody’s BAA- and AAA-bond index yields (𝐵𝐵𝐵𝐵𝐵𝐵 and 𝐴𝐴𝐴𝐴𝐴𝐴, respectively) from the St. 

Louis Federal Reserve Bank website over the sample period July 18, 2010–June 30, 2018. We define 

TERM = LTY −BILL and DEF = BAA−AAA. VIX, BILL, TERM, and DEF are commonly used 

returns predictors and among the few available at the daily frequency (e.g., Ang and Bekaert, 2007; 

Goyal and Welch, 2008; Brogaard and Detzel, 2015). 

Table 1 presents summary statistics for select variables used in our predictability tests. Panel A 

shows that Bitcoin earns an annualized daily excess return of 193.2% and a Sharpe ratio of 1.8 with an 

annualized volatility of 106.2%. Moreover, Bitcoin has a modest positive autocorrelation. In contrast, 

MKT has a modest negative autocorrelation and much lower average return and volatility over the 

period of 13.7% and 14.8%, respectively. Although far less than the Sharpe ratio of Bitcoin, the 

resulting MKT Sharpe ratio of 0.92 is relatively high by historical standards. Panel B presents summary 

statistics for several benchmark return predictor variables used in the next section. All four are highly 

persistent, with an autoregressive coefficient of 0.95–1.0. Moreover, Augmented Dickey-Fuller tests 

fail to reject the null that any of the return predictors except VIX contain a unit root. 

 
 

4| EMPIRICAL RESULTS 

In this section, we test the predictions from our model in Section 2 that (i) short-horizon returns on 

Bitcoin and other assets with hard-to-value fundamentals exhibit price drift and are predictable by 

moving averages of price, and (ii) moving averages can explain Bitcoin trading volume. We begin by 

examining the predictability of returns on Bitcoin, whose fundamentals are arguably “hardest" to value 
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among the assets we consider. 

4.1 In-sample predictability of Bitcoin returns 

Motivated by Eqs. (3) and (6), we test the predictability of one-day returns using the difference between 

the log price of Bitcoin averages (instead of the 𝑔𝑔𝑖𝑖-based weights).10 and the moving average of these log 

prices. For empirical work, we make two simplifications to the moving averages in Eq. (6). First, due to the 

difficulties of estimating the exact functionals, we assume equal weighting in the moving Second, following 

Brock et al. (1992), Lo et al. (2000), Han et al. (2013), Neely et al. (2014), and Han et al. (2016), we specify 

fixed time horizons of L =1, 2, 4, 10, and 20 weeks for the moving averages even though these horizons are 

endogenous in our model. 

     Specifically, letting 𝐵𝐵𝑡𝑡 denote the price of Bitcoin on day 𝑡𝑡, we define:   

 𝑏𝑏𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵𝑡𝑡), (9) 

 and the moving averages by:  

 𝑚𝑚𝑎𝑎𝑡𝑡(𝐿𝐿) = � 1
𝑛𝑛⋅𝐿𝐿
�∑𝑛𝑛⋅𝐿𝐿−1𝑙𝑙=0 𝑏𝑏𝑡𝑡−𝑙𝑙 , (10) 

where 𝑛𝑛 denotes the number of days per week in 𝐿𝐿 weeks. Bitcoin trades 7 days per week, however stock 

returns and the macro predictors are only available on the 5 business days per week. Hence, for tests using 

stock returns and the latter predictors, we use 𝑛𝑛 = 5. For tests using only Bitcoin returns and moving 

averages, we use 7-day-per-week observations (𝑛𝑛 = 7).11 The log price-to-moving average ratios, denoted 

𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿), serve as our central predictor of interest in empirical tests and are defined as:   

 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) = 𝑏𝑏𝑡𝑡 − 𝑚𝑚𝑎𝑎𝑡𝑡(𝐿𝐿). (11) 

 

Under condition (7), the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿)  should positively predict Bitcoin returns over short time 

horizons. Table 2 evaluates in-sample predictive regressions of the form:  

                                                      
10 The exact functional form is determined by our exact setting, e.g., log utility. The functional form we use in 
empirical tests still captures the essence of our model, which is robust to more general settings, that price drift exists 
by functions of past prices, and these functions at least approximate price-to-moving average ratios. 
11 To be clear, using 5-day (7-day) per week observations, the moving average horizons for 𝐿𝐿 =1, 2, 4, 10, and 20 
weeks are, respectively, 5, 10, 20, 50, and 100 (7, 14, 28, 70, and 140) days. 
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 𝑟𝑟𝑡𝑡+1 = 𝑎𝑎 + 𝑏𝑏′𝑋𝑋𝑡𝑡 + 𝜀𝜀𝑡𝑡+1, (12) 

where 𝑟𝑟𝑡𝑡+1 denotes the return on Bitcoin on day 𝑡𝑡 + 1. To facilitate comparison with predictability by 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐷𝐷𝐷𝐷𝐷𝐷, and 𝑉𝑉𝑉𝑉𝑉𝑉, we use 5-day “business" weeks throughout the table. Columns (1)–(5) of 

Panel A present results with 𝑋𝑋𝑡𝑡 = 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) for each 𝐿𝐿. The 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) significantly predict 𝑟𝑟𝑡𝑡+1 for all 

𝐿𝐿 with the positive sign predicted by our model. The moving averages of different horizons will 

mechanically be highly correlated with each other. Hence, to test whether different horizons’ 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) 

contain non-redundant predictive information, column (6) presents results in which the predictors are the 

first three principal components of the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿), denoted 𝑋𝑋𝑡𝑡 = (𝑃𝑃𝑃𝑃1𝑡𝑡, 𝑃𝑃𝑃𝑃2𝑡𝑡, 𝑃𝑃𝑃𝑃3𝑡𝑡)′. The second and 

third principal components each load with at least marginal significance and the adjusted 𝑅𝑅2 is roughly 

three to four times as high as the specifications in columns (1)–(5). Hence, it appears the set of all 

𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) contain at least two distinct predictive signals, consistent with our model in which different 

traders use different MA horizons. 

Panel B presents predictive regressions of the form Eq. (12) using the common “macro" return 

predictors 𝑋𝑋𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑋𝑋𝑡𝑡 , 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿𝑡𝑡 , 𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑡𝑡 , or 𝐷𝐷𝐷𝐷𝐹𝐹𝑡𝑡 . Columns (1)–(5) show that none of these variables 

significantly predict Bitcoin returns in Eq. (12) either individually or jointly. Moreover, column (6), which 

uses predictors 𝑋𝑋𝑡𝑡 = (𝑉𝑉𝑉𝑉𝑋𝑋𝑡𝑡 , 𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝑡𝑡 , 𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑡𝑡 , 𝐷𝐷𝐷𝐷𝐹𝐹𝑡𝑡 , 𝑃𝑃𝑃𝑃1𝑡𝑡, 𝑃𝑃𝑃𝑃2𝑡𝑡, 𝑃𝑃𝑃𝑃3𝑡𝑡)′, shows that the macro return 

predictors do not subsume the predictive power of the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿). 

Condition (7) will hold after enough time elapses with probability one as agents learn and posterior 

variance decreases. However, at times when the variance of the conditional expectation is relatively high, 

the predictive coefficient (analogous to the 𝑓𝑓𝑖𝑖(𝑡𝑡, 𝑡𝑡) − 𝑓𝑓𝑖𝑖(0, 𝑡𝑡) in Eq. (6)) on the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) should be 

relatively low. When this variance is high enough to violate condition (7), which is most likely to happen at 

the beginning of the sample, the predictive coefficient will even become negative. To test these patterns, we 

proxy for variance of the state variable using a measure of the conditional variance of the Bitcoin return. 

Specifically, we use the exponentially weighted moving average variance of Bitcoin returns, denoted 𝜎𝜎𝑡𝑡2.12 

                                                      
12 We use the smoothing parameter of 0.94 which is the default from RiskMetrics for computing conditional variances 
of daily returns. 𝜎𝜎𝑡𝑡2 is defined recursively as 𝜎𝜎𝑡𝑡2 = (0.94) ∗ 𝜎𝜎𝑡𝑡−12 + (0.06) ∗ 𝑟𝑟𝑡𝑡2, where 𝑟𝑟𝑡𝑡 is the day-𝑡𝑡 return on 
Bitcoin. 𝜎𝜎02 is defined to be the sample variance over the first 140 days of our sample that are not used in our return-
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Table 3 presents predictive regressions of the form:   

 𝑟𝑟𝑡𝑡+1 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) + 𝑐𝑐 ⋅ 𝜎𝜎𝑡𝑡2 + 𝑑𝑑 ⋅ 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) ⋅ 𝜎𝜎𝑡𝑡2 + 𝜀𝜀𝑡𝑡+1. (13) 

For these regressions, we use the whole sample period 12/06/2010–06/30/2018 and 7-day-per-week 

observations. The 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) load significantly for all moving average horizons. Consistent with our model, 

the interaction terms between 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) and 𝜎𝜎𝑡𝑡2 are all negative, so high variance attenuates the predictive 

coefficients on the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿). Moreover, the interaction terms are significant for three of the five moving 

average horizons. 

The top graph in Figure 1 plots the conditional variance of the Bitcoin returns over time. Consistent 

with the role of learning in our model, the variability of the conditional variance decreases over time. The 

bottom graph in Figure 1 plots the coefficient on the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(4) conditional on variance (𝑏𝑏 + 𝑑𝑑 ⋅ 𝜎𝜎𝑡𝑡2 ). 

Consistent with our model, this coefficient is positive most of the time, especially later in the sample, 

however it is negative when conditional variance is high enough, early in the sample. 

Overall, the in-sample predictability evidence in Tables 2 and 3 is consistent with our model. The 

𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) positively predict Bitcoin returns on average. However, high conditional variance that exists 

before agents have a chance to “learn it away" can reverse this predictive relationship. 

4.2|  Out-of-sample predictability of Bitcoin returns 

It is well established that highly persistent regressors such as V IX, BILL, TERM, and DEF can 

generate spuriously high in-sample return predictability (e.g., Stambaugh, 1999; Ferson et al., 2003; 

Campbell and Yogo, 2006). These biases, parameter instability, and look-ahead biases imply that in-

sample estimates can overstate true real-time predictability, which directly impacts investors (e.g., 

Goyal and Welch, 2008). Hence, we next assess the out-of-sample predictability of Bitcoin returns. 

Table 4 presents out-of-sample 𝑅𝑅2 (𝑅𝑅𝑂𝑂𝑂𝑂2 ) of forecasts from recursively estimated regressions similar 

to those estimated in-sample in Table 2. 13  The first five columns of Panel A report 𝑅𝑅𝑂𝑂𝑂𝑂2  based on 

                                                      
prediction tests because they are required to compute the initial 140-day moving average. In particular, the 𝜎𝜎𝑡𝑡2 is not 
based on any “in-sample" data used in the predictive regressions. In our model, it can be shown that the conditional 
variance of discretized returns is tightly linked to the posterior variance. 
13 All out-of-sample regressions in this Table use expanding (not rolling) windows using all data available through 𝑡𝑡 
to make the forecast for day 𝑡𝑡 + 1. 

Electronic copy available at: https://ssrn.com/abstract=3115846



17  

regressions of the form Eq. (12). For robustness, we report 𝑅𝑅𝑂𝑂𝑂𝑂2  using several split dates between the in-

sample and out-of-sample periods that include both relatively large in- and out-of-sample periods (e.g., 

Kelly and Pruitt, 2013). The last column (denoted MEAN), follows Rapach et al. (2010) and presents 𝑅𝑅𝑂𝑂𝑂𝑂2  

for the MEAN combination forecast, which is the simple average of the forecasts from the first five columns. 

Prior studies find that the MEAN combination forecasts are robust, frequently outperforming more 

sophisticated combination methods (that have more estimation error) in forecasting returns and other 

macroeconomic time-series out-of-sample (e.g., Timmermann, 2006; Rapach et al., 2010; Detzel and 

Strauss, 2018).  Moreover, with diffuse priors about which MA horizon is optimal, technical traders would 

presumably give equal-weight to the different forecasts. 

Panel A shows that several of the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) individually predict returns out-of-sample with 𝑅𝑅𝑂𝑂𝑂𝑂2 >

0. Moreover, for each split date, the MEAN forecasts forecasts predict returns with at least marginal 

significance and 𝑅𝑅𝑂𝑂𝑂𝑂2  of 0.83%–1.42%, which are high for the daily horizon. For comparison, Pettenuzzo 

et al. (2014) find out-of-sample 𝑅𝑅2 ranging from -0.08% to 0.55% for monthly stock returns. Panel B 

presents results from similar tests as Panel A, but using 𝑉𝑉𝑉𝑉𝑉𝑉, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, and 𝐷𝐷𝐷𝐷𝐷𝐷  as predictors. 

Unlike the forecasts based on the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿), those based on the macro predictors generally have negative 

𝑅𝑅𝑂𝑂𝑂𝑂2 . Prior evidence show that predicting returns out-of-sample is challenging, especially at short horizons. 

Hence, it is already remarkable that we observe one-day out-of-sample predictability of Bitcoin returns by 

the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿). It should also be the case that this predictability increases with horizon. Thus, in Panel C, we 

present 𝑅𝑅𝑂𝑂𝑂𝑂2  based on recursively estimated regressions of one-week (7-day) Bitcoin returns on the 

𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿):   

 𝑟𝑟𝑡𝑡+1,𝑡𝑡+7 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) + 𝜀𝜀𝑡𝑡+1,𝑡𝑡+7. (14) 

 Consistent with prior evidence on stock and bond return predictability, Panel C shows that for each 

out-of-sample window and each 𝐿𝐿, the 𝑅𝑅𝑂𝑂𝑂𝑂2  generally increase in both magnitude and significance relative 

to the analogous one-day-return 𝑅𝑅𝑂𝑂𝑂𝑂2  in Panel A. The MEAN forecast, for example, has 𝑅𝑅𝑂𝑂𝑂𝑂2  that are 

statistically significance and large for weekly returns. For comparison, Rapach et al. (2010) find 𝑅𝑅𝑂𝑂𝑂𝑂2  of 

1%–3.5% for quarterly stock returns. It is also worth noting that the predictability is not confined to the 
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early part of the sample, the most recent 10% of the sample still has large and statistically significant 𝑅𝑅𝑂𝑂𝑂𝑂2 . 

Overall, the out-of-sample evidence shows that the in-sample predictability of Bitcoin returns does not 

represent small-sample biases and evinces that investors can take advantage of Bitcoin predictability by 

moving averages of log prices. 

4.3| Performance of Bitcoin technical analysis strategies 

The results above show that the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) predict Bitcoin returns with statistical significance. Next, we 

evaluate the associated economic significance by assessing the performance of trading strategies based on 

this predictability predictability (e.g., Pesaran and Timmermann, 1995; Cochrane, 2008; Rapach et al., 

2010).  We define the buy indicator (buy=1) associated with each MA strategy, MA(𝐿𝐿), as:  

 𝑆𝑆𝐿𝐿,𝑡𝑡 = �1, if  𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) > 0
0, otherwise       (15) 

The return on the Bitcoin MA(𝐿𝐿) strategy on day 𝑡𝑡 is given by:  

 𝑟𝑟𝑡𝑡
𝑀𝑀𝑀𝑀(𝐿𝐿) = 𝑆𝑆𝐿𝐿,𝑡𝑡 ⋅ 𝑟𝑟𝑡𝑡 + (1 − 𝑆𝑆𝐿𝐿,𝑡𝑡) ⋅ 𝑟𝑟𝑓𝑓𝑓𝑓 , (16) 

where 𝑟𝑟𝑡𝑡 and 𝑟𝑟𝑓𝑓𝑓𝑓 denote, respectively, the return on Bitcoin and the risk-free rate on day 𝑡𝑡. Intuitively, 

the trading strategy defined by Eq. (16) captures the short-term trends predicted by our model by going long 

Bitcoin when its price is expected to trend upward, and vice versa. We denote the excess return of the buy-

and-hold position in Bitcoin as 𝑟𝑟𝑥𝑥𝑡𝑡 and the excess return on the MA(𝐿𝐿) strategies by 𝑟𝑟𝑥𝑥𝑡𝑡
𝑀𝑀𝑀𝑀(𝐿𝐿). 

Table 5 presents summary statistics for the buy-and-hold and MA(𝐿𝐿) strategies. Panel A, which uses 

the full sample (12/06/2010–6/30/2018), shows that all strategies are right-skewed and have fat tails. The 

Sharpe ratio of Bitcoin is 1.8, which is about four times the historical Sharpe ratio of the stock market (e.g., 

Cochraine, 2005). All of the MA(𝐿𝐿) strategies further increase this ratio to 2.0 to 2.5. Moreover, all but one 

of these Sharpe ratio gains are at least marginally significant using the heteroskedasticity and autocorrelation 

(HAC) robust test for equality of Sharpe ratios of Ledoit and Wolf (2008). The maximum drawdown of 

Bitcoin is 89.5%, while those of the MA(𝐿𝐿) strategies are all lower, ranging from 64.4% to 77.9%. 
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Comparing Panels B and C indicates that the performance of Bitcoin was higher during the first half of the 

sample, although the Sharpe ratio gains of the MA(𝐿𝐿) strategies relative to the buy-and-hold position are 

similar in both subsamples. 

Panel A of Figure 0 plots the cumulative value of $1 invested in Bitcoin and the MA(2) (two-week) 

strategy at the beginning of the sample. At the end of our sample, the $1 in Bitcoin grew to $33,617 while 

the $1 in the MA(2) strategy grew to approximately $148,549, a difference of about $114,932 over 7.5 

years! Panel B plots the drawdowns of Bitcoin and the MA(2) strategy. As Panel B shows, the out-

performance of the MA strategies relative to the buy and hold largely stems from the MA strategy having 

both shorter and less severe drawdowns than the buy-and-hold. For example, Bitcoin prices hit an all-time 

high in December 2017 at $19,343 and subsequently fell to $6,343 by the end of our sample. Panel B shows 

investors using the MA(2) strategy would have been spared most of the losses from this price decline. 

Table 6 further tests the performance of MA strategies relative to the buy-and-hold. Specifically, we 

regress the excess returns of the MA strategies on the buy-and-hold benchmark:  

 𝑟𝑟𝑥𝑥𝑡𝑡
𝑀𝑀𝑀𝑀(𝐿𝐿) = 𝛼𝛼 + 𝛽𝛽 ⋅ 𝑟𝑟𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑡𝑡 . (17) 

 The MA(𝐿𝐿) strategies are long the risk-free rate up to about 40% of days, so 𝛽𝛽 < 1 and 𝛽𝛽 ⋅ 𝑟𝑟𝑥𝑥𝑡𝑡 

is the natural benchmark return for evaluating the average returns of 𝑟𝑟𝑥𝑥𝑀𝑀𝑀𝑀(𝐿𝐿). Moreover, the arguments in 

Lewellen and Nagel (2006) show that 𝛼𝛼  will increase with the quantity cov(𝑆𝑆𝐿𝐿,𝑡𝑡 ,𝐸𝐸𝑡𝑡(𝑟𝑟𝑥𝑥𝑡𝑡)) , which 

measures the degree to which the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) positively predicts Bitcoin returns. 

A positive alpha also indicates that access to 𝑟𝑟𝑥𝑥𝑡𝑡
𝑀𝑀𝑀𝑀(𝐿𝐿) increases the maximum possible Sharpe ratio 

relative to that of a buy-and-hold Bitcoin position (𝑟𝑟𝑥𝑥𝑡𝑡). Thus, a measure of the economic size of alpha is 

the degree to which it expands the mean-variance frontier. Intuitively, this expansion depends on the alpha 

relative to the residual risk investors must bear to capture it. The maximum Sharpe ratio (𝑆𝑆𝑅𝑅𝑁𝑁𝑒𝑒𝑒𝑒) attainable 

from access to 𝑟𝑟𝑥𝑥𝑡𝑡 and 𝑟𝑟𝑥𝑥𝑡𝑡
𝑀𝑀𝑀𝑀(𝐿𝐿) is given by:  

 𝑆𝑆𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 = �� 𝛼𝛼
𝜎𝜎(𝜀𝜀𝑡𝑡)

�
2

+ 𝑆𝑆𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2 , (18) 

where 𝑆𝑆𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂  is the Sharpe ratio of 𝑟𝑟𝑥𝑥𝑡𝑡  (e.g., Bodie et al., 2014). The percentage increase in mean-
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variance utility, which, for any level of risk aversion, is equal to:  

 Utility  gain = 𝑆𝑆𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁
2 −𝑆𝑆𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂

2

𝑆𝑆𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂
2 , (19) 

measures the economic significance of the frontier expansion achieved by 𝛼𝛼. In Table 6, we report both the 

appraisal ratio � 𝛼𝛼
𝜎𝜎(𝜀𝜀𝑡𝑡)

� and mean-variance utility gains along with the 𝛼𝛼. For comparison, Campbell and 

Thompson (2008) find that timing expected returns on the stock market increases mean-variance utility by 

approximately 35%, providing a useful benchmark utility gain. 

Panel A shows that over the entire sample period, the MA(𝐿𝐿) strategies earn significant 𝛼𝛼 with 

respect to 𝑟𝑟𝑥𝑥𝑡𝑡 of 0.09% to 0.24% per day. These alphas lead to economically large utility gains of 19.7% 

to 85.5%. Panel B shows these results remain strong in the second half of the sample. With the turnovers in 

the Table, it would take large transaction costs of (1.38%–6.85% one-way) to eliminate the alphas of the 

MA(𝐿𝐿) strategies. These figures are large relative to actual one-way transaction costs in Bitcoin. For 

example, market orders on the Bitcoin exchange GDAX have fees of 0.10%–0.30% for market orders and 

0% for limit orders. Even the most expensive market order fees are an order of magnitude too small to 

meaningfully impact the 𝛼𝛼s of the MA(𝐿𝐿) strategies. 

A naive alternative to our discrete buy-or-sell strategies defined by Eq. (16) would be estimating 

mean-variance weights using our Bitcoin-return forecasts, and then testing whether the resulting strategy 

out-performs the buy-and-hold benchmark (e.g., Marquering and Verbeek, 2004; Campbell and Thompson, 

2008; Huang et al., 2015).  However, this approach has several theoretical and empirical shortcomings 

relative to our simple MA(𝐿𝐿) strategies. First, the mean-variance weights assume the investor is choosing 

between the market return and the risk-free asset. However, Bitcoin is a poor theoretical proxy to the market 

portfolio of risky assets. Second, prior to 2017, investors could not short-sell Bitcoin or buy it on margin or 

via futures contracts. Hence, the weights on Bitcoin should be constrained between zero and one. Thus, the 

mean-variance-weights approach could only outperform the MA strategies by choosing optimal variation 

between zero and one. This in turn exacerbates the following two problems: (i) that the mean-variance 

weights require at least two estimated forecasts, and therefore come with substantial estimation error, and 
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(ii) the mean-variance weights assume for tractability the mean-variance functional form of investor utility. 

While a common assumption, mean-variance utility is unlikely to precisely capture the behavior of a 

representative investor. In contrast, our discrete MA(𝐿𝐿) strategies are based on a directly observable out-

of-sample signals and require no estimation error. They also make no assumption about the utility of 

underlying investors. Overall, the strong performance of our MA(𝐿𝐿) strategies relative to the buy-and-hold 

precludes the need for more sophisticated methods to demonstrate the economic significance of out-of-

sample predictability by MAs. 

4.4| Performance of trading strategies applied to other cryptocurrencies 

To examine the robustness of our trading strategy performance, Table 7 presents performance results similar 

to those above for Ripple (XRP, Panels A and B) and Etheruem (ETH, Panels C and D), which are the two 

largest digital currencies by market capitalization beside Bitcoin. Panel A shows that all the MA strategies 

except MA(4) increase Sharpe ratios relative to the buy-and-hold strategy by up to 0.54 (from 1.05). This 

difference is significant for the MA(1) and MA(2) strategies and marginally significant for the equal-

weighted portfolio of MA strategies (EW). Each strategy reduces the maximum drawdown of the buy-and-

hold Ripple strategy by about 4.7%-32.3%. Panel B shows that the MA(1), MA(2), MA(4), and EW 

strategies also earn significant alphas with respect to the buy-and-hold XRP strategy, generating large utility 

gains (92.9%–180.1%) in the process. 

Panels C and D present similar results as Panels A and D, respectively, but for strategies based on 

ETH instead of XRP. The ETH sample is only two and a half years long, leading to relatively low statistical 

power, but qualitatively similar inferences as for the Bitcoin and Ethereurm MA strategies. The MA 

strategies earn higher Sharpe ratios than the buy-and-hold ETH strategy. Panel C shows the ETH MA-

strategy alphas are significant for three horizons (1, 2, and 4 weeks) as well as the EW strategy and the 

associated utility gains are economically large. 

4.5|  Performance of strategies applied to dotcom-era NASDAQ portfolio 

Next, we apply each of the MA strategies defined by Eq. (16) to the NASDAQ total return index 

using daily data over the sample 1996–2005, a ten year window approximately centered around the peak of 
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the NASDAQ “bubble" in March 2000. During this time, fundamentals of tech stocks were difficult to 

interpret, widely disagreed upon, and had great forecast uncertainty. For example,  Ofek and Richardson 

(2003) document that during this period, aggregate earnings of internet stocks were negative and price-

earnings ratios frequently exceeded 1000. In particular, NASDAQ fundamentals plausibly qualify as hard-

to-interpret in the 1996–2005 sample. 

Table 8 documents the performance of the MA strategies applied to the NASDAQ. Results in Panel 

A show that over 1996–2005, the MA(2), MA(4) and MA(10) methods possess mean returns more than 

four percent greater than the 7.3% of the buy-and-hold NASDAQ strategy. Further, all five methods 

substantially boost the NASDAQ Sharpe ratio of 0.29. For example, MA(2), MA(4) and MA(10) possess 

Sharpe ratios of 0.73 to 0.79. The last column documents that the MA strategies also greatly reduce the 

maximum drawdown of NASDAQ (77.9%) to 25.7%–45.6%.14 Panel B of Table 8 presents the alphas, 

appraisal and utility gain for the NASDAQ. Results document significant alpha for MA(2) to MA(10) 

strategies. It also reveals high utility gains for all five strategies, ranging from 137%–688%. 

Panel C of Table 8 presents results over a tighter window around the NASDAQ peak. A number of 

new internet companies entered the NASDAQ around this period, and the fundamentals of many other firms 

were questioned after several large earnings misstatements. The NASDAQ peaked in March 2000, and by 

the end of 2002 had lost 78% of its value. In contrast, the MA strategies have maximum drawdowns from 

34%-43% and the equal-weighted MA strategy lost only 34% of its value—less than half the buy-and-hold 

position. Further, the Sharpe ratios for the MA strategies during this five year window ranged from 0.36-

0.60, compared to zero for the buy-and-hold. The equal-weighted strategy generates a Sharpe ratio of 0.57 

and is significantly greater than the buy-and-hold Sharpe ratio. Overall, the performance of the trading 

strategies documented in Table 8 is consistent with the predictions of our model. 

Figure 3 depicts the performance of the buy-and-hold position in NASDAQ relative to the MA(4) 

strategy. Panel A shows the MA(4) increases more steadily than NASDAQ. The MA(4) returns $3.66 at 

                                                      
14 We also applied our strategies to the NASDAQ over the past ten years, which follows the maturation of internet-
based technologies and an increased understanding of fundamentals. These untabulated results show that the MA 
strategies no longer earn significant alpha or produce Sharpe ratio gains. 
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the end of 2005 to an investor with a $1 investment at the beginning of 1996. Conversely, a buy-and-hold 

investor in NASDAQ would have about half ($1.85) of the accumulated value. Panel A shows that much of 

the performance gains from the MA strategy come from avoiding most of NASDAQ’s large crash in the 

early 2000’s. Panel B further shows that the MA(4) strategy, similar to when applied to Bitcoin, derives 

much of its performance from avoiding the major NASDAQ drawdowns during this time period. Following 

the dotcom era, tech companies become more established and the availability of value-relevant information 

presumably increases. Hence, according to our model, the MA strategies performance should decline after 

this time period. Panel C confirms that, indeed, the Sharpe ratio improvements of the NASDAQ MA(4) 

strategy steadily decline post-2001. 

4.6|  Performance of strategies applied to small-cap stocks, young stocks, and stocks with low 

analyst coverage 

The NASDAQ  results exploit time-series variation in the degree to which fundamentals are hard to 

forecast. Next we exploit cross-sectional variation.  Specifically,  we  examine the predictability  of 

returns by price-to-MA ratios across portfolios sorted on size, age, and analyst coverage, which are three 

common proxies for the availability of value relevant information (e.g., Bhushan, 1989; Hong et al., 2000; 

Zhang, 2006). 

In Panels A and B of Table 9, we apply our MA strategies to each of the three value-weighted Fama 

and French (1993) size portfolios,  “Small”,  “Medium” and,  “Big”.  The sample period is  July 1, 

1963 through June 30, 2018.15 Panel A presents heteroskedasticity-robust t-statistics from regressions of 

daily excess portfolio returns on the price-to-moving average ratios:   

 𝑟𝑟𝑥𝑥𝑡𝑡+1 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) + 𝜀𝜀𝑡𝑡+1. (20) 

For each MA, these 𝑡𝑡-statistics are positive and highly significant (3.96–6.03) for the portfolio of small-

cap stocks. The 𝑡𝑡-statistics fall for mid-cap stocks (1.67–4.43) and become negative and insignificant for 

large-cap stocks ((-0.96)–(-0.10)). Hence, consistent with our model, the predictability of returns by the 

𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) is greater for small-cap stocks than large-caps. 

                                                      
15Untabulated results show that inferences are robust across each half of this sample as well. 
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Panel B presents Sharpe ratios for the buy-and-hold (BH) return on each portfolio as well as each of 

the MA strategies and the equal-weighted portfolio (EW) of the MA strategies. The figures parallel those in 

Panel A: Sharpe ratio gains of the MA strategies are highest for small-cap stocks, followed by mid-caps, 

and then large-caps. For example, in small-caps, the Sharpe ratio gain of the EW strategy are 1.91 from 0.5, 

relative to 0.65 from 0.39 in large caps. While the performance of the MA strategies is higher for small-caps 

than large caps, the gains are still nontrivial for large-cap stocks. Coupled with the fact that large-cap stocks 

returns are unpredictable by the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿), this finding indicates that the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) are useful volatility-

timing signals for large-caps.16 Panels C and D repeat the analysis of Panels A and B, respectively, for 

value-weighted tercile portfolios formed at the end of each June based on firm age, which, following Zhang 

(2006), is defined to be the number of years a firm is in the CRSP database. Consistent with our theory and 

the results in Panels A and B, Panels C and D show that younger firms, which are presumably harder to 

value, have relatively high predictive coefficients in Eq. (20) and relatively high Sharpe ratios from the 

𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) strategies. For example, the predictive coefficients for young firms in Panel C are significant for 

all 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) with 𝑡𝑡-statistics of 2.89 or higher, while they are never significant, and often negative, for 

old firms. Moreover, while the BH Sharpe ratios are the same for old and young firms in Panel D, they MA 

Sharpe ratios of young firm are about twice or more than those of the old firms. 

Table 10 presents 𝑡𝑡-statistics for predictive coefficients from regressions of the form Eq. (20) for 

portfolios formed by independent sorts on size and analyst coverage. Due to IBES data availability, the 

sample period for these tests is January 1985 through June 2018. Consistent with our model, the 𝑡𝑡 statistics 

decrease with both size and analyst coverage. The 𝑡𝑡-statistics are large and positive in small caps, and within 

small caps, predictive coefficients are significantly higher for stocks with the lowest analyst coverage. 

Conversely, the predictive coefficients are all negative for large caps, and significantly moreso for the large-

cap portfolios with high analyst coverage. 

Overall, the results from Tables 9 and 10 show that, consistent with our model, the price-to-MA 

                                                      
16 Sharpe ratio gains and alphas increase with (positive) return predictability of the timing signal (which, in our case, 
are the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿)) and decrease with (positive) predictability of volatility (e.g., Lewellen and Nagel, 2006). That is, these 
performance metrics measure the combined effect of “market timing” and “volatility timing” benefits of a given strategy. 
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ratios predict returns of small-cap, young-firm, and low-analyst-coverage stocks, all of which have a relative 

lack of value-relevant information, and fail to predict returns of old-firm and large-cap stocks. 

4.7| Volume implications of our model 

In our model, trading results from differences in the moving averages used by different traders. Testing this 

refutable implication provides an opportunity to validate our model’s mechanism in explaining the 

predictability of Bitcoin by moving averages of multiple horizons. 

We test for volume generated by technical trading in two ways. First, we evaluate whether increases 

in total turnover implied by different MA signals also leads to higher Bitcoin volume. We measure this total 

turnover by the sum of the turnover generated by each moving-average buy-sell indicator 𝑆𝑆𝐿𝐿,𝑡𝑡: ∑𝐿𝐿 |Δ𝑆𝑆𝐿𝐿,𝑡𝑡|. 

Second, we evaluate whether disagreement among MA buy-sell indicators (𝑆𝑆𝐿𝐿,𝑡𝑡) is associated with higher 

trading volume. Intuitively, if technical traders disagree, they will trade with each other. As a measure of 

disagreement, we use the cross-sectional standard deviation of the signed turnover implied by each MA 

strategy, denoted 𝜎𝜎𝐿𝐿(Δ𝑆𝑆𝐿𝐿,𝑇𝑇). For each measure, Table 11 presents estimations of regressions of the form:   

Δlog(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒𝑡𝑡) = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑋𝑋𝑡𝑡 + 𝑐𝑐 ⋅ |𝑟𝑟𝑡𝑡| + 𝑑𝑑 ⋅ Δlog(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒𝑡𝑡−1) + 𝜀𝜀𝑡𝑡 , (21) 

where the 𝑋𝑋𝑡𝑡 denotes one or both of our two volume-inducing variables. Because large price shocks are 

the main empirical determinant of volume and are likely correlated with our price-based indicators, we 

control for the absolute value of returns (see, e.g., Karpoff, 1987). We use change in log volume as the 

dependent variable because the level of volume is not stationary. Volume is from coinmarketcap.com, which 

began reporting on 12/27/2013, so these regressions use the 12/27/2013–6/30/2018 (𝑛𝑛 = 1,647). In Panel 

A, we restrict 𝑑𝑑 = 0. However, to avoid any possibility of results being driven by autocorrelation in volume, 

we do not make this restriction in Panel B. 

Results in column (1) of both Panels demonstrate that increases in turnover across MA horizons lead 

to increases in volume, controlling for price shocks. Similarly, column (2) of each panel shows that increases 

in disagreement among MA traders also leads to significant increases in volume. Finally, comparing column 

(3) of each Panel shows that the MA-implied turnover and disagreement jointly and positively correlate with 
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volume, however the statistical inference varies with specification.17 Overall, the results in Table 11 are 

consistent with traders using MA strategies significantly impacting trading volume in Bitcoin. 

 

5.| CONCLUSION 

In this paper, we theoretically and empirically examine dynamics of the prices of assets with “hard-

to-value" fundamentals, such as Bitcoin. We propose a new equilibrium theory that shows that when 

fundamentals are hard to value, rational learning causes price drift and ratios of prices to their moving 

averages to forecast returns. This in turn provides a fully rational motivation for common technical analysis 

strategies that use price-to-moving average ratios, which are typically justified by mispricing-based 

arguments. Our empirical results strongly confirm the predictions of our model. Bitcoin and stocks with 

hard-to-value fundamentals are predictable by price-to-moving average ratios and simple real-time 

strategies based on this predictability significantly outperform the buy-and-hold strategy. Given that the key 

assumption underlying our model is the difficulty of forecasting fundamentals, a potentially fruitful avenue 

for future research is extending our results to other assets well-described by this assumption, perhaps new 

asset classes, and to examine the degree to which price drift is concentrated within these assets.  

                                                      
17 This finding is likely not due to multicollinearity, the correlation between 𝜎𝜎𝐿𝐿�Δ𝑆𝑆𝐿𝐿,𝑡𝑡� and Σ𝐿𝐿�Δ𝑆𝑆𝐿𝐿,𝑡𝑡� is 0.53. 
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 Appendix: Proof of Proposition 1 

   
In this appendix, we present the proof of Proposition 1. 

First we provide the evolution equations for conditional expectation and the conditional 

variance. Following the standard continuous-time filtering theory, ∀𝑖𝑖 = 1, 2, 𝑀𝑀𝑡𝑡
𝑖𝑖 satisfies   

 𝑑𝑑𝑀𝑀𝑡𝑡
𝑖𝑖 = 𝜆𝜆(𝑋𝑋� −𝑀𝑀𝑡𝑡

𝑖𝑖)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑀𝑀𝑖𝑖 (𝑡𝑡)𝑑𝑑𝑍̂𝑍1𝑡𝑡𝑖𝑖 ,   𝑀𝑀0
𝑖𝑖 = 𝑀𝑀𝑖𝑖(0), (1) 

 where 𝑍̂𝑍1𝑡𝑡𝑖𝑖  is the (observable) innovation processes satisfying  

 𝑍̂𝑍1𝑡𝑡𝑖𝑖 = ∫𝑡𝑡0
𝑋𝑋𝑠𝑠−𝑀𝑀𝑠𝑠

𝑖𝑖

𝜎𝜎𝛿𝛿
𝑑𝑑𝑑𝑑 + 𝑍𝑍1𝑡𝑡, 

𝜎𝜎𝑀𝑀𝑖𝑖 (𝑡𝑡) = 𝑉𝑉𝑖𝑖(𝑡𝑡)
𝜎𝜎𝛿𝛿

+ 𝜌𝜌𝜎𝜎𝑋𝑋, 𝑉𝑉𝑖𝑖(𝑡𝑡) ≡ 𝐸𝐸[(𝑋𝑋𝑡𝑡 − 𝑀𝑀𝑡𝑡
𝑖𝑖)2|𝐹𝐹𝑡𝑡𝑖𝑖] is the conditional variance of 𝑋𝑋𝑡𝑡 satisfying   

 𝑑𝑑𝑉𝑉𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −2𝜆𝜆𝑉𝑉𝑖𝑖(𝑡𝑡) + 𝜎𝜎𝑋𝑋2 − � 1
𝜎𝜎𝛿𝛿
𝑉𝑉𝑖𝑖(𝑡𝑡) + 𝜌𝜌𝜎𝜎𝑋𝑋�

2
. (2) 

 This implies that   

 𝑑𝑑𝛿𝛿𝑡𝑡
𝛿𝛿𝑡𝑡

= 𝑀𝑀𝑡𝑡
𝑖𝑖𝑑𝑑𝑑𝑑 + 𝜎𝜎𝛿𝛿𝑑𝑑𝑍̂𝑍1𝑡𝑡𝑖𝑖 ,   𝑖𝑖 = 1, 2. (3) 

 

Next we derive the optimal trading strategy and equilibrium Bitcoin price. As in Detemple 

(1986), Gennotte (1986), and Detemple (1991).18 In particular, given the initial endowment 

𝜂𝜂𝑖𝑖 > 0 and the prior (𝑀𝑀𝑖𝑖(0−),𝑉𝑉𝑖𝑖(0−)), Investor 𝑖𝑖’s portfolio selection problem is equivalent to  

 max
𝜃𝜃𝑖𝑖,𝐶𝐶𝑖𝑖

𝐸𝐸 ∫𝑇𝑇0 𝑒𝑒−𝛽𝛽𝛽𝛽log𝐶𝐶𝑡𝑡𝑖𝑖𝑑𝑑𝑑𝑑, 

subject to   

 𝑑𝑑𝑊𝑊𝑡𝑡 = 𝑟𝑟𝑡𝑡𝑊𝑊𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜃𝜃𝑡𝑡𝑖𝑖(𝜇𝜇𝑡𝑡𝑖𝑖 − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜃𝜃𝑡𝑡𝑖𝑖𝜎𝜎𝛿𝛿𝑑𝑑𝑍̂𝑍1𝑡𝑡𝑖𝑖 − 𝐶𝐶𝑡𝑡𝑖𝑖𝑑𝑑𝑑𝑑. (4) 

 Define 𝜋𝜋𝑡𝑡𝑖𝑖  as the state price density for investor 𝑖𝑖. Then   

 𝑑𝑑𝜋𝜋𝑡𝑡𝑖𝑖 = −𝑟𝑟𝑡𝑡𝜋𝜋𝑡𝑡𝑖𝑖𝑑𝑑𝑑𝑑 − 𝜅𝜅𝑡𝑡𝑖𝑖𝜋𝜋𝑡𝑡𝑖𝑖𝑑𝑑𝑍̂𝑍1𝑡𝑡𝑖𝑖 , (5) 

 where 𝜅𝜅𝑡𝑡𝑖𝑖 is the price of risk perceived by investor 𝑖𝑖, i.e.,   

 𝜅𝜅𝑡𝑡𝑖𝑖 = 𝜇𝜇𝑡𝑡
𝑖𝑖−𝑟𝑟𝑡𝑡
𝜎𝜎𝛿𝛿

. (6) 

 Using the standard dual approach (e.g., Cox and Huang, 1989) to solve Investor 𝑖𝑖’s problem, we 

have   

 𝑒𝑒−𝛽𝛽𝛽𝛽(𝐶𝐶𝑡𝑡𝑖𝑖)−1 = 𝜉𝜉𝑖𝑖𝜋𝜋𝑡𝑡𝑖𝑖 ,   𝑖𝑖 = 1, 2, (7) 

                                                      
18 The separation principle applies because the objective function is independent of the unobservable state variable 
(see, e.g., Fleming and Rishel (1975, Chap. 4, Sec. 11) . 
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 where 𝜉𝜉𝑖𝑖 is the corresponding Lagrangian multiplier. Define   

 𝛼𝛼𝑡𝑡 = 𝜉𝜉1𝜋𝜋𝑡𝑡1

𝜉𝜉2𝜋𝜋𝑡𝑡2
 (8) 

 to be the ratio of the marginal utilities. Then 𝛼𝛼𝑡𝑡 evolves as   

 𝑑𝑑𝛼𝛼𝑡𝑡 = −𝛼𝛼𝑡𝑡
𝜇𝜇𝑡𝑡
𝑑𝑑

𝜎𝜎𝛿𝛿
𝑑𝑑𝑍̂𝑍1𝑡𝑡1 ,   𝜇𝜇𝑡𝑡𝑑𝑑 = 𝜇𝜇𝑡𝑡1 − 𝜇𝜇𝑡𝑡2,   𝛼𝛼0 = 𝜂𝜂2

𝜂𝜂1
, (9) 

where the first equality is from Ito’s lemma and the consistency condition (i.e., the Bitcoin price is 

the same across all investors), and the last equality follows from the budget constraints. 

By market clearing condition 𝐶𝐶𝑡𝑡1 + 𝐶𝐶𝑡𝑡2 = 𝛿𝛿𝑡𝑡, Equation (7) and Equation (8), we have  

 𝐶𝐶𝑡𝑡1 = 𝛿𝛿𝑡𝑡
1+𝛼𝛼𝑡𝑡

,    𝐶𝐶𝑡𝑡2 = 𝛼𝛼𝑡𝑡𝛿𝛿𝑡𝑡
1+𝛼𝛼𝑡𝑡

. (10) 

Then applying Ito’s lemma to (7) and compare with equation (5), we have  

 𝜅𝜅𝑡𝑡1 = 𝜎𝜎𝛿𝛿 + 𝛼𝛼𝑡𝑡
1+𝛼𝛼𝑡𝑡

𝜇𝜇𝑡𝑡
𝑑𝑑

𝜎𝜎𝛿𝛿
,    𝜅𝜅𝑡𝑡2 = 𝜎𝜎𝛿𝛿 −

1
1+𝛼𝛼𝑡𝑡

𝜇𝜇𝑡𝑡
𝑑𝑑

𝜎𝜎𝛿𝛿
, 

and  

 𝑟𝑟𝑡𝑡 = 𝛽𝛽 + 1
1+𝛼𝛼𝑡𝑡

𝑀𝑀𝑡𝑡
1 + 𝛼𝛼𝑡𝑡

1+𝛼𝛼𝑡𝑡
𝑀𝑀𝑡𝑡
2 − 𝜎𝜎𝛿𝛿2. (11) 

Therefore, the fraction of wealth invested in the Bitcoin by Investor 1 is  

 𝜅𝜅𝑡𝑡1/𝜎𝜎𝛿𝛿 , 

i.e.,   

 1 + 𝛼𝛼𝑡𝑡
1+𝛼𝛼𝑡𝑡

𝜇𝜇𝑡𝑡
𝑑𝑑

𝜎𝜎𝛿𝛿
2, (12) 

and by Investor 2 is   

 1 − 1
1+𝛼𝛼𝑡𝑡

𝜇𝜇𝑡𝑡
𝑑𝑑

𝜎𝜎𝛿𝛿
2. (13) 

So if 𝜇𝜇𝑡𝑡𝑑𝑑 > 0, i.e., Investor 1 is more optimistic than Investor 2, then Investor 1 borrows to buy the 

Bitcoin, and Investor 2 sells the Bitcoin and lends. 

Using the expression for 𝐶𝐶𝑡𝑡1 and equation (7), we have the Bitcoin price  

 𝐵𝐵𝑡𝑡 = 𝐸𝐸𝑡𝑡1 ∫
𝑇𝑇
𝑡𝑡

𝜋𝜋𝑠𝑠1

𝜋𝜋𝑡𝑡1
𝛿𝛿𝑠𝑠𝑑𝑑𝑑𝑑 = 1−𝑒𝑒−𝛽𝛽(𝑇𝑇−𝑡𝑡)

𝛽𝛽
𝛿𝛿𝑡𝑡, 

which implies that  

 𝑑𝑑𝐵𝐵𝑡𝑡 = ((𝛽𝛽 + 𝑀𝑀𝑡𝑡
𝑖𝑖)𝐵𝐵𝑡𝑡 − 𝛿𝛿𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝛿𝛿𝐵𝐵𝑡𝑡𝑑𝑑𝑍̂𝑍1𝑡𝑡𝑖𝑖 , 

 

 𝜇𝜇𝑡𝑡𝑖𝑖 = 𝛽𝛽 + 𝑀𝑀𝑡𝑡
𝑖𝑖 . (14) 

 This implies that  
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 𝑑𝑑𝑍̂𝑍1𝑡𝑡𝑖𝑖 = 1
𝜎𝜎𝛿𝛿
�𝑑𝑑log𝐵𝐵𝑡𝑡 − �𝑀𝑀𝑡𝑡

𝑖𝑖 − 𝛽𝛽
1−𝑒𝑒−𝛽𝛽(𝑇𝑇−𝑡𝑡) −

1
2
𝜎𝜎𝛿𝛿2� 𝑑𝑑𝑑𝑑�. 

Investor 1’s wealth is  

 𝑊𝑊1𝑡𝑡 = 𝐸𝐸𝑡𝑡1 ∫
𝑇𝑇
𝑡𝑡

𝜋𝜋𝑠𝑠1

𝜋𝜋𝑡𝑡1
𝐶𝐶𝑠𝑠1𝑑𝑑𝑑𝑑 = 1−𝑒𝑒−𝛽𝛽(𝑇𝑇−𝑡𝑡)

𝛽𝛽
𝐶𝐶𝑡𝑡1 = 1

1+𝛼𝛼𝑡𝑡
𝐵𝐵𝑡𝑡 

and Investor 2’s wealth is  

 𝑊𝑊2𝑡𝑡 = 𝐸𝐸𝑡𝑡1 ∫
𝑇𝑇
𝑡𝑡

𝜋𝜋𝑠𝑠2

𝜋𝜋𝑡𝑡2
𝐶𝐶𝑠𝑠2𝑑𝑑𝑑𝑑 = 1−𝑒𝑒−𝛽𝛽(𝑇𝑇−𝑡𝑡)

𝛽𝛽
𝐶𝐶𝑡𝑡2 = 𝛼𝛼𝑡𝑡

1+𝛼𝛼𝑡𝑡
𝐵𝐵𝑡𝑡. 

The number of Bitcoin Investor 1 holds is equal to  

 𝑁𝑁1𝑡𝑡 =
(1+ 𝛼𝛼𝑡𝑡

1+𝛼𝛼𝑡𝑡

𝜇𝜇𝑡𝑡
𝑑𝑑

𝜎𝜎𝛿𝛿
2)𝑊𝑊1𝑡𝑡

𝐵𝐵𝑡𝑡
= 1

1+𝛼𝛼𝑡𝑡
(1 + 𝛼𝛼𝑡𝑡

1+𝛼𝛼𝑡𝑡

𝜇𝜇𝑡𝑡
𝑑𝑑

𝜎𝜎𝛿𝛿
2). 

The number of Bitcoin Investor 2 holds is equal to  

 𝑁𝑁2𝑡𝑡 =
(1− 1

1+𝛼𝛼𝑡𝑡

𝜇𝜇𝑡𝑡
𝑑𝑑

𝜎𝜎𝛿𝛿
2)𝑊𝑊2𝑡𝑡

𝐵𝐵𝑡𝑡
= 𝛼𝛼𝑡𝑡

1+𝛼𝛼𝑡𝑡
(1 − 1

1+𝛼𝛼𝑡𝑡

𝜇𝜇𝑡𝑡
𝑑𝑑

𝜎𝜎𝛿𝛿
2). 

We have thus  

 𝜕𝜕𝑁𝑁1𝑡𝑡
𝜕𝜕𝛼𝛼𝑡𝑡

= −(1+𝛼𝛼𝑡𝑡)+(1−𝛼𝛼𝑡𝑡)𝜇𝜇𝑡𝑡
𝑑𝑑/𝜎𝜎𝛿𝛿

2

(1+𝛼𝛼𝑡𝑡)3
, 

which is < 0 if and only if  

 𝛼𝛼𝑡𝑡 > 𝜇𝜇𝑡𝑡
𝑑𝑑/𝜎𝜎𝛿𝛿

2−1
𝜇𝜇𝑡𝑡
𝑑𝑑/𝜎𝜎𝛿𝛿

2+1
. 

Next we derive the expression of the conditional expectation 𝑀𝑀𝑡𝑡
𝑖𝑖 in the form of moving averages. 

We have   

 𝑑𝑑𝑀𝑀𝑡𝑡
𝑖𝑖 = (𝑎𝑎𝑖𝑖(𝑡𝑡) − 𝑏𝑏𝑖𝑖(𝑡𝑡)𝑀𝑀𝑡𝑡

𝑖𝑖)𝑑𝑑𝑑𝑑 + 𝑐𝑐𝑖𝑖(𝑡𝑡)𝑑𝑑log𝐵𝐵𝑡𝑡, (15) 

 where  

 𝑎𝑎𝑖𝑖(𝑡𝑡) = 𝜆𝜆𝑋𝑋� + � 𝛽𝛽
1−𝑒𝑒−𝛽𝛽(𝑇𝑇−𝑡𝑡) + 1

2
𝜎𝜎𝛿𝛿2� 𝑐𝑐𝑖𝑖(𝑡𝑡), 

 

 𝑏𝑏𝑖𝑖(𝑡𝑡) = 𝜆𝜆 + 𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑐𝑐𝑖𝑖(𝑡𝑡) = 𝜎𝜎𝑀𝑀
𝑖𝑖 (𝑡𝑡)
𝜎𝜎𝛿𝛿

. 

Equation (15) implies that  

 𝑀𝑀𝑡𝑡
𝑖𝑖 = ℎ𝑖𝑖(𝑡𝑡) + ∫𝑡𝑡0 𝑓𝑓

𝑖𝑖(𝑢𝑢, 𝑡𝑡)𝑑𝑑log𝐵𝐵𝑢𝑢, 

where  

 ℎ𝑖𝑖(𝑡𝑡) = 𝑒𝑒−∫
𝑡𝑡
0 𝑏𝑏

𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑 ∫𝑡𝑡0 𝑎𝑎
𝑖𝑖(𝑢𝑢)𝑒𝑒∫

𝑢𝑢
0 𝑏𝑏𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,. 

and   
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 𝑓𝑓𝑖𝑖(𝑢𝑢, 𝑡𝑡) = 𝑐𝑐𝑖𝑖(𝑢𝑢)𝑒𝑒∫
𝑢𝑢
𝑡𝑡 𝑏𝑏𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑. (16) 

 Then by integration by parts, we have  

 𝑀𝑀𝑡𝑡
𝑖𝑖 = ℎ𝑖𝑖(𝑡𝑡) − 𝑓𝑓𝑖𝑖(0, 𝑡𝑡)log𝐵𝐵0 + 𝑐𝑐𝑖𝑖(𝑡𝑡)log𝐵𝐵𝑡𝑡 − ∫𝑡𝑡0 log𝐵𝐵𝑢𝑢𝑑𝑑𝑓𝑓𝑖𝑖(𝑢𝑢, 𝑡𝑡) 

 = ℎ𝑖𝑖(𝑡𝑡) + 𝑓𝑓𝑖𝑖(0, 𝑡𝑡)log 𝐵𝐵𝑡𝑡
𝐵𝐵0

+ (𝑓𝑓𝑖𝑖(𝑡𝑡, 𝑡𝑡) − 𝑓𝑓𝑖𝑖(0, 𝑡𝑡)) �log𝐵𝐵𝑡𝑡 −
∫𝑡𝑡0 𝑔𝑔

𝑖𝑖(𝑢𝑢,𝑡𝑡)log𝐵𝐵𝑢𝑢𝑑𝑑𝑑𝑑

∫𝑡𝑡0 𝑔𝑔
𝑖𝑖(𝑢𝑢,𝑡𝑡)𝑑𝑑𝑑𝑑

�, 

 where   

 𝑔𝑔𝑖𝑖(𝑢𝑢, 𝑡𝑡) = 𝜕𝜕𝑓𝑓𝑖𝑖(𝑢𝑢,𝑡𝑡)
𝜕𝜕𝜕𝜕

. (17) 

      We show next that if Condition (7) is satisfied, then 𝑔𝑔𝑖𝑖(𝑢𝑢, 𝑡𝑡) > 0. To prove this, we 

substitute 𝑓𝑓𝑖𝑖(𝑢𝑢, 𝑡𝑡) in Equation (16) into (17) to obtain   

 𝑔𝑔𝑖𝑖(𝑢𝑢, 𝑡𝑡) = �𝑑𝑑𝑐𝑐
𝑖𝑖(𝑢𝑢)
𝑑𝑑𝑑𝑑

+ 𝑐𝑐𝑖𝑖(𝑢𝑢)𝑏𝑏𝑖𝑖(𝑢𝑢)� 𝑒𝑒∫
𝑢𝑢
𝑡𝑡 𝑏𝑏𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑, (18) 

 thus we need to find condition for 𝑑𝑑𝑐𝑐
𝑖𝑖(𝑢𝑢)
𝑑𝑑𝑑𝑑

+ 𝑐𝑐𝑖𝑖(𝑢𝑢)𝑏𝑏𝑖𝑖(𝑢𝑢) > 0. Note that   

 𝑑𝑑𝑐𝑐𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −2𝜆𝜆 �𝑐𝑐𝑖𝑖(𝑡𝑡) − 𝜌𝜌 𝜎𝜎𝑋𝑋
𝜎𝜎𝛿𝛿
� + 𝜎𝜎𝑋𝑋

2

𝜎𝜎𝛿𝛿
2 − (𝑐𝑐𝑖𝑖(𝑡𝑡))2, (19) 

 and 𝑏𝑏𝑖𝑖(𝑡𝑡) = 𝜆𝜆 + 𝑐𝑐𝑖𝑖(𝑡𝑡), we need to have the following condition   

 𝑐𝑐𝑖𝑖(𝑡𝑡) < 2𝜌𝜌 𝜎𝜎𝑋𝑋
𝜎𝜎𝛿𝛿

+ 𝜎𝜎𝑋𝑋
2

𝜆𝜆𝜎𝜎𝛿𝛿
2. (20) 

 Due to the dynamics of 𝑐𝑐𝑖𝑖(𝑡𝑡) given in Equation (19), it can be proven that at 𝑐𝑐𝑖𝑖(𝑡𝑡) = 2𝜌𝜌 𝜎𝜎𝑋𝑋
𝜎𝜎𝛿𝛿

+

𝜎𝜎𝑋𝑋
2

𝜆𝜆𝜎𝜎𝛿𝛿
2, 

𝑑𝑑𝑐𝑐𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

< 0. This implies that as long as   

 𝑐𝑐𝑖𝑖(0) ≤ 2𝜌𝜌 𝜎𝜎𝑋𝑋
𝜎𝜎𝛿𝛿

+ 𝜎𝜎𝑋𝑋
2

𝜆𝜆𝜎𝜎𝛿𝛿
2, (21) 

 or equivalently,   

 𝑉𝑉𝑖𝑖(0) ≤ 𝜌𝜌𝜎𝜎𝑋𝑋𝜎𝜎𝛿𝛿 + 𝜎𝜎𝑋𝑋
2

𝜆𝜆
, (22) 

 Condition (7) holds. 

Under Condition (7), the expression   

 ∫𝑡𝑡0 𝑔𝑔
𝑖𝑖(𝑢𝑢,𝑡𝑡)log𝐵𝐵𝑢𝑢𝑑𝑑𝑑𝑑

∫𝑡𝑡0 𝑔𝑔
𝑖𝑖(𝑢𝑢,𝑡𝑡)𝑑𝑑𝑑𝑑

 (23) 

 is a weighted average of log(𝐵𝐵𝑢𝑢)  over the interval [0, 𝑡𝑡] . In addition, by the definition of 

𝑔𝑔𝑖𝑖(𝑢𝑢, 𝑡𝑡), this implies that  

 𝑓𝑓𝑖𝑖(𝑡𝑡, 𝑡𝑡) − 𝑓𝑓𝑖𝑖(0, 𝑡𝑡) > 0 

for any 𝑡𝑡. This completes the proof of Proposition 1.  
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Figure 1: Conditional variance of Bitcoin returns   

Panel A depicts the condition variance of Bitcoin returns using an exponentially 
weighted moving average variance (σ2) of daily Bitcoin returns. 

Panel B depicts the predictive coefficient of pmat(4) conditional on (b + d· σ2) using the following 
regression estimated in Table 3:  

   𝒓𝒓𝒕𝒕+𝟏𝟏 = 𝒂𝒂 + 𝒃𝒃 ⋅ 𝒑𝒑𝒑𝒑𝒂𝒂𝒕𝒕(𝑳𝑳) + 𝒄𝒄 ⋅ 𝝈𝝈𝒕𝒕𝟐𝟐 + 𝒅𝒅 ⋅ 𝒑𝒑𝒑𝒑𝒂𝒂𝒕𝒕(𝑳𝑳) ⋅ 𝝈𝝈𝒕𝒕𝟐𝟐 + 𝜺𝜺𝒕𝒕+𝟏𝟏.                 (1) 
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Figure 2:  Performance of investment in Bitcoin buy-and-hold and MA strategies 
 
Panel A presents cumulative returns to $1 invested in the buy-and-hold and MA(4) 
Bitcoin strategies over 7/18/2010–6/30/2018. Panel B presents drawdowns of each 
strategy in Panel A. 
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Figure 3:  Performance of investment in NASDAQ buy-and-hold and MA(4) strategies 
 
Panel A plots cumulative returns to $1 invested in the buy-and-hold and MA(4) NASDAQ 
strategies on 1/2/1996 through 12/30/2005. Panel B plots drawdowns of each strategy. Panel C 
plots Sharpe ratios for each strategy estimated, for each date t, using the sample period 1/2/1996 
through t. 

 

Electronic copy available at: https://ssrn.com/abstract=3115846



34  

Table 1: Summary statistics 
 
Panel A presents summary statistics of the returns in excess of the 1-day risk-free rate on Bitcoin (BTC) and the CRSP 
value-weighted index (𝑀𝑀𝑀𝑀𝑀𝑀). Means, standard deviations, and Sharpe ratios are annualized. Panel B presents summary 
statistics of other relevant variables. AR1 denotes the first-order autoregressive coefficient and 𝑝𝑝𝑑𝑑𝑑𝑑 denotes the p-value 
from an augmented Dickey-Fuller test for the null of a unit root. The sample period is daily from 12/06/2010−6/30/2018. 
Bitcoin returns trade 7 days a week and have 2,766 observations during the sample period. Other variables are available 
5 days a week and have 1,976 observations during this period.  
 
  

Panel A: Returns 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis AR1 
𝐵𝐵𝐵𝐵𝐵𝐵  193.18 106.20 1.82 -38.83 52.89 0.78 14.97 0.05 
𝑀𝑀𝑀𝑀   13.65 14.76 0.92 -6.97 4.97 -0.52 8.04 -0.08 

Panel B: Predictor variables 
  Mean(%) SD(%) Min(%) Max(%) Skewness Kurtosis AR1 𝑝𝑝𝑑𝑑𝑑𝑑 
𝑉𝑉𝑉𝑉𝑉𝑉  16.30 5.53 9.14 48.00 2.05 8.36 0.95 0.00 
𝐵𝐵𝐵𝐵𝐵𝐵   0.32 0.48 -0.02 1.91 1.92 5.61 1.00 1.00 
𝑇𝑇𝑇𝑇𝑇𝑇   1.99 0.61 0.87 3.60 0.45 2.50 1.00 0.89 
𝐷𝐷𝐷𝐷𝐷𝐷  0.95 0.25 0.53 1.54 0.62 2.33 1.00 0.31 
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Table 2: In-sample predictability of Bitcoin returns 
 
This table presents estimates of predictive regressions of the form:  𝑟𝑟𝑡𝑡+1 = 𝑎𝑎 + 𝑏𝑏′𝑋𝑋𝑡𝑡 + 𝜖𝜖𝑡𝑡+1, where 𝑟𝑟𝑡𝑡+1 denotes the 
return on Bitcoin on business day 𝑡𝑡 + 1 .  In Panel A, the predictors are the log price/moving average 
ratios, 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿), where L is the number of weeks, with 5 business days per week. We also extract the first three 
principal components (𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2, 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃3) from the 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿). In columns (1) to (5) of Panel B, the predictors 
include these principal components along with the other return predictors (𝑉𝑉𝑉𝑉𝑉𝑉,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, and 𝐷𝐷𝐷𝐷𝐷𝐷). Column (6) 
of Panel B adds the three principal components. The sample period are business days 12/06/2010–6/30/2018 (𝑛𝑛 =
1,976). Heteroscedasticity-robust t-statistics are presented in parentheses. 
 

Panel A: 1-Day Predictability of Bitcoin returns by log moving average/price ratios 
 (1) (2) (3) (4) (5)  (6) 
𝑝𝑝𝑝𝑝𝑝𝑝(1)  0.39    

 
𝑃𝑃𝑃𝑃1 -0.01 

 (2.61)    
 

 (-1.46) 
𝑝𝑝𝑝𝑝𝑝𝑝(2)   0.40   

 
𝑃𝑃𝑃𝑃2 2.64 

   (2.67)   
 

 (2.86) 
𝑝𝑝𝑝𝑝𝑝𝑝(4)    0.42  

 
𝑃𝑃𝑃𝑃3 -5.01  

  (2.81)  
 

 (1.82) 
𝑝𝑝𝑝𝑝𝑝𝑝(10)     0.46 

 
  

    (3.02) 
 

  
𝑝𝑝𝑝𝑝𝑝𝑝(20)      0.45   
     (3.00)   
Adj-𝑅𝑅2 
(%) 0.41 0.45 0.51 0.62 0.64  1.88 
Panel B: 1-Day Predictability of Bitcoin returns by log moving average/price ratios 

 (1) (2) (3) (4) (5)  (6) 
𝑉𝑉𝑉𝑉𝑉𝑉  -0.04    -0.05  -0.02 

 (-1.33)    (-1.30)  (-0.34) 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵   -0.11   0.05  0.02 

  (-0.71)   (1.08)  (1.91) 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇    0.34  0.34  -0.04 

   (1.01)  (-0.49)  (-0.59) 
𝐷𝐷𝐷𝐷𝐷𝐷     -0.43 -0.75  -0.01 
    (-1.68) (-1.85)  (1.53) 
𝑃𝑃𝑃𝑃1        -0.01 

       (2.32) 
𝑃𝑃𝑃𝑃3        2.24 
       (2.50) 
𝑃𝑃𝑃𝑃3        5.30 
       (1.84) 
Adj-𝑅𝑅2 
(%) 

0.01 0.00 0.00 0.00 0.20  1.82 
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Table 3: In-sample predictability of Bitcoin returns conditional on variance 
 
This table presents estimates of predictive regressions of the form:  

𝑟𝑟𝑡𝑡+1 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) + 𝑐𝑐 ⋅ 𝜎𝜎𝑡𝑡2 + 𝑑𝑑 ⋅ 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) ⋅ 𝜎𝜎𝑡𝑡2 + 𝜖𝜖𝑡𝑡+1, 
where 𝑟𝑟𝑡𝑡+1 denotes the return on Bitcoin on day 𝑡𝑡 + 1, 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) denotes the log price-to-𝐿𝐿-week moving average 
ratio, and 𝜎𝜎𝑡𝑡2 denotes the exponential weighted moving average variance of Bitcoin returns. The 𝜎𝜎𝑡𝑡2 are defined 
recursively as 𝜎𝜎𝑡𝑡2 = 0.94 ⋅ 𝜎𝜎𝑡𝑡−12 + 0.06 ⋅ 𝑟𝑟𝑡𝑡2. The sample period for the regression is 12/06/2010−6/30/2018 (n=2,766 
using 7-day-per week observations). The initial 𝜎𝜎02  is estimated as the sample variance of 𝑟𝑟𝑡𝑡  over 7/28/2010–
12/05/2010. Heteroskedasticity-robust t-statistics are presented in parentheses. *, **, *** denotes 10%, 5%, 1% 
significance levels. 
 
 (1) (2) (3) (4) (5) 
𝑝𝑝𝑝𝑝𝑝𝑝(1)        
  (2.13)     

𝑝𝑝𝑝𝑝𝑝𝑝(1) ⋅ 𝜎𝜎2   -5.03     
 (-1.31)     

𝑝𝑝𝑝𝑝𝑝𝑝(2)   7.52***    
  (3.29)    

𝑝𝑝𝑝𝑝𝑝𝑝(2) ⋅ 𝜎𝜎2    -5.57**    
  (-2.07)    

𝑝𝑝𝑝𝑝𝑝𝑝(4)     5.81***   
   (4.01)   

𝑝𝑝𝑝𝑝𝑝𝑝(4) ⋅ 𝜎𝜎2    -3.95**   
   (-2.43)   

𝑝𝑝𝑝𝑝𝑝𝑝(10)      2.87***  
    (3.55)  

𝑝𝑝𝑝𝑝𝑝𝑝(10) ⋅ 𝜎𝜎2      -1.83**  
    (-2.08)  

𝑝𝑝𝑝𝑝𝑝𝑝(20)      1.26*** 
     (2.59) 
𝑝𝑝𝑝𝑝𝑝𝑝(20) ⋅ 𝜎𝜎2       -0.98 
     (-1.56) 
𝜎𝜎2   1.04** 1.28*** 1.50*** 1.51** 1.56** 
  (2.12) (2.70) (2.97) (2.51) (2.24) 
Adj-𝑅𝑅2 (%)   0.93 1.62 2.10 1.77 1.09 

 
  

Electronic copy available at: https://ssrn.com/abstract=3115846



37  

Table 4: Out-of-sample predictability of Bitcoin returns   
 
Panels A and B present 𝑅𝑅𝑂𝑂𝑂𝑂2  (out-of-sample 𝑅𝑅2) in percent for recursively estimated predictive regressions of the form: 
𝑟𝑟𝑡𝑡+1 = 𝑎𝑎 + 𝑏𝑏′𝑋𝑋𝑡𝑡 + 𝜖𝜖𝑡𝑡+1, where 𝑟𝑟𝑡𝑡+1 denotes day-𝑡𝑡 + 1 return on Bitcoin. Both panels use 5-day-per week observations. 
In Panel A, the predictors are the 𝑝𝑝𝑝𝑝𝑝𝑝(𝐿𝐿) and in Panel B, they are 𝑉𝑉𝑉𝑉𝑉𝑉,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐷𝐷𝐷𝐷𝐷𝐷, and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. Panel C uses the 7-
day-per-week-observations and forecasts one week returns (𝑟𝑟𝑡𝑡+1,𝑡𝑡+7) using recursively estimated regressions of the form: 
𝑟𝑟𝑡𝑡+1,𝑡𝑡+7 = 𝑎𝑎 + 𝑏𝑏′𝑋𝑋𝑡𝑡 + 𝜖𝜖𝑡𝑡+1,𝑡𝑡+7. 𝑇𝑇0 denotes the in-sample period as a percentage of the total sample. The MEAN is a 
simple combination forecast that averages the five moving average forecasts. The sample is 12/06/2010−6/30/2018 
(n=1976 in Panels A and B; n=2766 for Panel C). *, **, *** denotes 10%, 5%, 1% significance levels using the Clark-West 
(2007) MSFE-adjusted statistic that tests the null of equal MSFE (𝑅𝑅𝑂𝑂𝑂𝑂2 =0) against the competing model that has a lower 
MSFE (𝑅𝑅𝑂𝑂𝑂𝑂2 >0). 
 

Panel A: 1-day horizon, 5-day-per-week observations 
𝑇𝑇0  𝑝𝑝𝑝𝑝𝑝𝑝(1) 𝑝𝑝𝑝𝑝𝑝𝑝(2) 𝑝𝑝𝑝𝑝𝑝𝑝(4) 𝑝𝑝𝑝𝑝𝑝𝑝(10) 𝑝𝑝𝑝𝑝𝑝𝑝(20) MEAN 
25% -0.32 -0.11 0.70** 1.01** 0.72** 0.83* 
50% -0.73 -0.27 0.08 0.31** 0.86*** 0.38* 
90% 0.94 1.13* 1.51* 0.81 0.70 1.42* 

Panel B: 1-day horizon, 5-day-per-week observations 
𝑇𝑇0  VIX BILL TERM DEF  MEAN 
25% -0.87 -0.21 -0.27 -0.01  -0.14 
50% -1.07 0.06 -0.06 -0.03  -0.13 
90% -0.77 -0.08 -0.02 0.17  -0.10 

Panel C: 1-week horizon, 7-day-per-week observations 
𝑇𝑇0  𝑝𝑝𝑝𝑝𝑝𝑝(1) 𝑝𝑝𝑝𝑝𝑝𝑝(2) 𝑝𝑝𝑝𝑝𝑝𝑝(4) 𝑝𝑝𝑝𝑝𝑝𝑝(10) 𝑝𝑝𝑝𝑝𝑝𝑝(20) MEAN 
25% -0.11 0.84** 3.67** 3.71** 1.66** 3.08** 
50% 1.05** 1.06** 2.38** 2.87** 4.13** 3.62** 
90% 2.70** 2.32* 2.57** 1.07* 1.66**  1.92** 
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Table 5: Performance of Bitcoin trading strategies  
 
This table presents summary statistics of the returns in excess of the 1-day risk-free rate on Bitcoin (BTC) and each of the 
MA(𝐿𝐿) Bitcoin strategies, which take a long position in Bitcoin if 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) > 0, and the risk-free rate otherwise. EW 
denotes an equal-weighted portfolio of the individual 𝑀𝑀𝑀𝑀(𝐿𝐿) strategies. Means, standard deviations, and Sharpe ratios are 
annualized. The sample period is daily from 12/06/2010−6/30/2018 (7 days per week). Panel A presents full sample results 
(𝑛𝑛=2,764). Panels B and C, respectively, present results for the first (9/17/2010-8/28/2014, n=1,383) and second halves 
(8/29/2014-6/30/2018, 𝑛𝑛=1,383) of the sample. MDD denotes maximum drawdown. We use Ledoit and Wolf (2008) test 
of equality of Sharpe ratios that is robust to heteroskedasticity and serial correlation. *, **, *** denotes significance at the 
10%, 5%, and 1% confidence levels, respectively. 
 

Panel A: Full-sample 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
BTC 193.18 106.20    1.82 -38.83 52.89 0.78 14.97 89.48 
MA(1) 196.54 79.33   2.48** -38.83 52.89 2.12 31.47 71.65 
MA(2) 187.38 79.20   2.37** -38.83 52.89 2.07 31.27 64.43 
MA(4) 187.34 82.67   2.27* -38.83 52.89 1.63 29.21 69.66 
MA(10) 195.70 88.50   2.21* -38.83 52.89 1.59 24.99 70.28 
MA(20) 188.77 94.96   1.99 -38.83 52.89 1.27 21.11 77.87 
EW 191.15 78.72  2.43*** -38.83 52.89 2.09 31.31 64.60 
Panel B: First-half 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
BTC 288.46 129.50   2.23 -38.83 52.89 0.77 12.47 89.48 
MA(1) 279.04 98.77   2.83* -38.83 52.89 1.85 24.58 71.65 
MA(2) 272.33 99.01   2.75 -38.83 52.89 1.88 24.32 64.43 
MA(4) 277.63 104.11   2.67 -38.83 52.89 1.45 22.16 69.66 
MA(10) 309.57 110.78   2.79** -38.83 52.89 1.48 19.20 70.28 
MA(20) 271.54 118.56   2.29* -38.83 52.89 1.17 16.26 77.87 
EW 282.02 99.41   2.84** -38.83 52.89 1.85 23.54 64.60 
Panel C: Second-half 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
BTC 97.89 75.80   1.29 -21.90 25.41 0.10 8.14 69.77 
MA(1) 114.03 52.90   2.16** -11.13 25.41 1.68 16.37 32.82 
MA(2) 102.43 52.02   1.97* -11.13 22.97 1.02 12.81 37.27 
MA(4) 97.05 52.81   1.84 -14.24 22.97 0.66 12.24 43.85 
MA(10) 81.83 57.67   1.42 -16.73 22.97 0.13 11.34 56.33 
MA(20) 106.01 62.82   1.69 -16.73 25.41 0.41 12.03 58.44 
EW 100.27 49.70   2.02** -11.13 22.97 1.00 12.10 40.05 
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Table 6: Alphas of MA Bitcoin strategies relative to buy-and-hold benchmark 
  
Panels A and B present regressions of the form: 𝑟𝑟𝑟𝑟𝑡𝑡

MA(𝐿𝐿) = 𝛼𝛼 + 𝛽𝛽 ⋅ 𝑟𝑟𝑥𝑥𝑡𝑡 + 𝜖𝜖𝑡𝑡, where 𝑟𝑟𝑥𝑥𝑡𝑡 denotes the day-𝑡𝑡 buy-and-hold 
excess return on Bitcoin and 𝑟𝑟𝑥𝑥𝑡𝑡

MA(𝐿𝐿) denotes the excess return on the MA(𝐿𝐿) Bitcoin strategy. Beneath each regression 
is the appraisal ratio of the MA strategy as well as the utility gain from access to 𝑟𝑟𝑟𝑟𝑡𝑡

MA(𝐿𝐿) in addition to 𝑟𝑟𝑥𝑥𝑡𝑡. EW denotes 
an equal-weighted portfolio of the MA strategies.  Panel A also reports the average daily turnover (TO) of the MA strategies 
and the one-way transaction cost (FEE) that would be required to eliminate the alpha of the MA strategy. Panel A presents 
results for the full sample period (12/06/2010−6/30/2018, 𝑛𝑛=2,766). Panel B presents results for the second half of the 
sample (n=1,383). Heteroskedasticity-robust t-statistics are below point estimates in parentheses. *, **, *** denotes 
significance at the 10%, 5%, and 1% confidence levels, respectively. 
 

Panel A: Full-sample 
 MA(1) MA(2) MA(4) MA(10) MA(20) EW 
𝛽𝛽  0.56*** 0.56*** 0.61*** 0.69*** 0.80*** 0.64*** 
 (15.65) (15.52) (17.70) (23.02) (34.57) (24.08) 
𝛼𝛼(%) 0.24*** 0.22*** 0.19*** 0.17*** 0.09** 0.18*** 
 (4.66) (4.21) (3.75) (3.37) (2.12) (4.71) 
𝑅𝑅2  0.56 0.56 0.61 0.69 0.80 0.75 
Appraisal 1.68 1.52 1.35 1.26 0.81 1.71 
Utility gain(%) 85.53 69.39 55.45 47.84 19.70 88.15 
TO(%) 17.62 10.35 6.15 2.93 1.37 7.68 
FEE(%) 1.38 2.12 3.13 5.75 6.85 2.39 
Panel B: Second-half subsample 
 MA(1) MA(2) MA(4) MA(10) MA(20)    EW 
𝛽𝛽  0.49*** 0.47*** 0.49*** 0.58*** 0.69*** 0.54*** 
 (12.84) (12.51) (12.76) (14.70) (19.56) (19.29) 
𝛼𝛼(%) 0.18*** 0.15*** 0.14** 0.07 0.11** 0.13*** 
 (3.41) (2.90) (2.54) (1.31) (2.10) (3.27) 
𝑅𝑅2  0.49 0.47 0.48 0.58 0.69 0.68 
Appraisal 1.75 1.49 1.31 0.67 1.10 1.69 
Utility gain(%) 183.90 132.81 102.43 27.17 72.90 170.74 
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Table 7: Performance of trading strategies applied to Ripple and ETH 
 
Panel A presents summary statistics of the returns in excess of the 1-day risk-free rate on Ripple (XRP) and each of the 
MA(𝐿𝐿)  strategies applied to Ripple. Means, standard deviations, and Sharpe ratios are annualized. MDD denotes 
maximum drawdown. EW denotes an equal-weighted portfolio of the MA strategies. Panel B presents regressions of the 
form: 𝑟𝑟𝑟𝑟𝑡𝑡

MA(𝐿𝐿) = 𝛼𝛼 + 𝛽𝛽 ⋅ 𝑟𝑟𝑥𝑥𝑡𝑡 + 𝜖𝜖𝑡𝑡 , where 𝑟𝑟𝑥𝑥𝑡𝑡  denotes the day-𝑡𝑡  buy-and-hold excess return on XRP and 𝑟𝑟𝑥𝑥𝑡𝑡
MA(𝐿𝐿) 

denotes the excess return on the MA(𝐿𝐿) XRP strategy. Beneath each regression is the appraisal ratio of the MA strategy 
and the utility gain from access to 𝑟𝑟𝑟𝑟𝑡𝑡

MA(𝐿𝐿). In Panels A and B, the sample is 12/24/2013–6/30/2018 (𝑛𝑛=1,650).  Panels 
C and D, presents similar statistics as Panels A and B, respectively, but for strategies applied to Ethereum (ETH) instead 
of XRP. In Panels C and D, the sample is 12/28/2015–6/30/2018 (𝑛𝑛=916). We use the Ledoit and Wolf (2008) test of 
equality of Sharpe ratios. Heteroskedasticity robust t-statistics are below point estimates in parentheses.  *, **, *** 
denotes significance at the 10%, 5%, and 1% confidence levels, respectively. 
 

Panel A: Summary Statistics for XRP strategies 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
XRP 167.15 159.61 1.05 -46.01 179.37 7.54 141.85 90.22 
MA(1) 222.36 140.17 1.59** -46.01 179.37 10.90 234.94 77.60 
MA(2) 222.98 140.98 1.58** -46.01 179.37 10.85 230.83 72.41 
MA(4) 196.70 140.42 1.40 -46.01 179.37 10.93 234.77 57.93 
MA(10) 164.11 141.39 1.16 -46.01 179.37 10.76 228.61 81.63 
MA(20) 135.51 143.88 0.94 -46.01 179.37 10.24 213.68 85.50 
EW 188.33 136.34 1.38* -46.01 179.37 11.86 262.17 65.72 
  Panel B: Strategy alphas for XRP strategies 
 (1) (2) (3) (4) (5)  (6) 
 MA(1) MA(2) MA(4) MA(10) MA(20) EW 
𝛽𝛽  0.77*** 0.78*** 0.77*** 0.78*** 0.81*** 0.79*** 
 (10.99) (11.87) (11.36) (11.87) (13.83) (12.34) 
𝛼𝛼(%) 0.26*** 0.25*** 0.18** 0.09 -0.00 0.16** 
 (3.24) (3.20) (2.33) (1.15) (-0.01) (2.49) 
𝑅𝑅2  0.77 0.78 0.78 0.78 0.81 0.84 
Appraisal 1.40 1.41 1.01 0.50 0.00 1.06 
Utility gain(%) 178.29 180.09 92.91 22.97 0.00 102.93 
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Table 7: (Cont’d)   
 

Panel C: Summary Statistics for ETH strategies 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
ETH 334.16 132.00 2.53 -27.06 35.36 0.81 6.90 73.48 
MA(1) 319.09 107.37 2.97 -27.06 35.36 1.68 12.49 42.36 
MA(2) 310.48 108.48 2.86 -27.06 35.36 1.61 12.15 43.11 
MA(4) 345.23 111.45 3.10* -27.06 35.36 1.41 11.44 56.81 
MA(10) 247.73 116.86 2.12 -27.06 35.36 1.10 10.13 75.23 
MA(20) 302.12 122.65 2.46 -27.06 35.36 1.05 8.77 69.92 
EW 304.93 107.28 2.84 -27.06 35.36 1.57 12.23 50.41 
 Panel D: Strategy alphas for ETH strategies 
 (1) (2) (3) (4) (5)  (6) 
 MA(1) MA(2) MA(4) MA(10) MA(20)  EW 
𝛽𝛽  0.66*** 0.67*** 0.71*** 0.78*** 0.86*** 0.74*** 
 (17.83) (18.49) (21.39) (26.36) (39.89) (27.89) 
𝛼𝛼(%) 0.27** 0.23** 0.29*** -0.04 0.04 0.16** 
 (2.55) (2.23) (2.90) (-0.41) (0.50) (2.17) 
𝑅𝑅2  0.66 0.67 0.71 0.78 0.86 0.82 
Appraisal 1.57 1.37 1.79 0.00 0.31 1.30 
Utility gain(%) 38.39 29.39 50.07 0.00 1.48 26.25 
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Table 8:  Performance of trading strategies applied to NASDAQ over 1996–2005 
 
Panel A presents summary statistics of the returns in excess of the 1-day risk-free rate on NASDAQ and each of the 
MA(𝐿𝐿) NASDAQ strategies. Means, standard deviations, and Sharpe ratios are annualized. EW denotes an equal-
weighted portfolio of the MA strategies. MDD denotes maximum drawdown. Panel B presents regressions of the form: 
𝑟𝑟𝑟𝑟𝑡𝑡

MA(𝐿𝐿) = 𝛼𝛼 + 𝛽𝛽 ⋅ 𝑟𝑟𝑥𝑥𝑡𝑡 + 𝜖𝜖𝑡𝑡 , where 𝑟𝑟𝑥𝑥𝑡𝑡  denotes the day-𝑡𝑡 buy-and-hold excess return on NASDAQ and 𝑟𝑟𝑥𝑥𝑡𝑡
MA(𝐿𝐿) 

denotes the excess return on the MA(𝐿𝐿) NASDAQ strategy. Beneath each regression is the appraisal ratio of the MA 
strategy and the utility gain from access to 𝑟𝑟𝑟𝑟𝑡𝑡

MA(𝐿𝐿). The sample period is 1/2/1996−12/30/2005 (𝑛𝑛=2,519). Panel C 
present results similar to Panel A using over the 1998–2002 subsample (𝑛𝑛=1,256). We use the Ledoit and Wolf (2008) 
test of equality of Sharpe ratios. Heteroskedasticity-robust t-statistics are below point estimates in parentheses.  *, **, 
*** denotes significance at the 10%, 5%, and 1% confidence levels, respectively. 
  

Panel A: Summary Statistics of NASDAQ strategies 
 Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
NASDAQ 8.53 29.01 0.29 -9.69 14.15 0.19 7.14 77.93 
MA(1) 9.32 18.34 0.51 -6.23 8.10 0.07 9.55 42.73 
MA(2) 12.80 17.63 0.73* -6.23 8.10 0.04 9.17 42.08 
MA(4) 13.34 17.41 0.77* -5.59 8.10 -0.07 8.36 25.66 
MA(10) 13.84 17.45 0.79* -7.66 4.92 -0.40 7.37 33.81 
MA(20) 7.78 17.20 0.45 -7.66 4.28 -0.50 7.68 45.62 
EW 11.42 15.09 0.76** -5.58 4.86 -0.16 5.97 34.49 
 Panel B: Strategy alphas 
 (1) (2) (3) (4) (5) (6) 
 MA(1) MA(2) MA(4) MA(10) MA(20) EW 
𝛽𝛽  0.40*** 0.37*** 0.36*** 0.36*** 0.35*** 0.37*** 
 (16.66) (16.23) (16.28) (16.53) (16.32) (19.97) 
𝛼𝛼(%) 0.02 0.04** 0.04** 0.04** 0.02 0.03** 
 (1.32) (2.18) (2.33) (2.44) (1.09) (2.47) 
𝑅𝑅2  0.40 0.37 0.36 0.36 0.35 0.50 
Appraisal 0.42 0.69 0.74 0.77 0.34 0.78 
Utility gain(%) 199.85 548.18 627.66 687.82 137.42 105.47 
Panel C: Summary Statistics of NASDAQ strategies over 1998–2002 
  Mean(%) SD(%) Sharpe Min(%) Max(%) Skewness Kurtosis MDD(%) 
NASDAQ -0.13 37.18 0.00 -9.69 14.15 0.23 5.08 77.93 
MA(1) 9.62 23.07 0.42 -6.23 8.10 0.06 7.17 42.73 
MA(2) 10.69 21.93 0.49* -6.23 8.10 0.05 7.14 42.08 
MA(4) 12.84 21.47 0.60* -5.59 8.10 -0.07 6.62 25.66 
MA(10) 11.89 21.12 0.56* -7.66 4.92 -0.43 6.10 33.81 
MA(20) 7.11 19.98 0.36 -7.66 4.28 -0.48 6.59 39.75 
EW 10.43 18.23 0.57** -5.58 4.86 -0.15 4.83 34.49 
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Table 9: Predictability of returns and performance of MA strategies across size portfolios 
 
In Panels A and B, we apply our MA strategies to each of the three value-weighted Fama and French (1993) size 
portfolios, “Small”, “Medium”, and “Big”. Panel A presents heteroskedasticity-robust t-statistics from regressions of 
daily excess portfolio returns on the 𝐿𝐿-week price-to-moving average ratios:   

𝑟𝑟𝑥𝑥𝑡𝑡+1 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) + 𝜖𝜖𝑡𝑡+1. 
 
Panel B presents Sharpe ratios for the buy-and-hold (BH) return on each portfolio as well as each of the MA strategies 
and the equal-weighted portfolio (EW) of the MA strategies. Panels C and D repeat the analysis of Panels A and B, 
respectively, using age-sorted tercile portfolios, “Young”, “Medium”, and “Old”. The sample period is July 1, 1963 
through June 30, 2018. 
 
Panel A: t-statistics from predictive regressions for returns of size portfolios 
 MA(1) MA(2) MA(4) MA(10) MA(20) 

Small 6.03 5.90 5.87 5.23 3.96 
Medium 4.43 3.42 3.06 2.44 1.67 
Big -0.10 -0.92 -0.96 -0.83 -0.67 
Panel B: Sharpe ratios of MA strategies applied to size portfolios 
 BH MA(1) MA(2) MA(4) MA(10) MA(20) EW 
Small 0.50 2.05 1.90 1.75 1.52 1.16 1.91 
Mediu
m 0.51 1.73 1.52 1.27 1.10 0.87 1.49 

Large 0.39 0.73 0.62 0.53 0.48 0.47 0.65 
Panel C: t-statistics from predictive regressions for returns of age portfolios 
 MA(1) MA(2) MA(4) MA(10) MA(20) 
Young 6.56 4.97 4.49 3.70 2.89 
Medium 3.96 2.59 2.14 1.82 1.33 
Old 0.62 -0.25 -0.33 -0.34 -0.32 
Panel D: Sharpe ratios of MA strategies applied to age portfolios 
 BH MA(1) MA(2) MA(4) MA(10) MA(20) EW 
Young 0.48 2.00 1.75 1.57 1.35 1.12 1.79 
Mediu
m 0.46 1.53 1.22 1.16 0.95 0.85 1.31 

Old 0.47 0.91 0.73 0.61 0.59 0.63 0.80 
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Table 10: Predictability of returns and performance of MA strategies across portfolios 
formed on size and analyst coverage 
 
At the end of each year, we form nine value-weighted portfolios formed as the intersections of two independent tercile 
sorts of all U.S. common stocks into three portfolios based on each of market capitalization (“Small”, “Medium”, and 
“Big”) and the number of analyst forecasts over the year (“Low”, “Medium”, and “High”). The first three columns of 
the table present heteroskedasticity-robust t-statistics from regressions of daily excess portfolio returns on the 𝐿𝐿-week 
price-to-moving average ratios:   

𝑟𝑟𝑥𝑥𝑡𝑡+1 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡(𝐿𝐿) + 𝜖𝜖𝑡𝑡+1. 
The fourth column of the table presents heteroskedasticity-robust GMM-based t-statistics of the difference between 
the 𝑏𝑏 from to the “Low” portfolio in the row minus the 𝑏𝑏 from the “High” portfolio in the row. The sample period is 
January 2, 1985 through June 29, 2018.  
 
MA(1) 
  Low Med High Low-High 
Small 5.24 5.04 4.93 2.95 
Med 1.48 1.83 2.72 -1.75 
Big 0.19 0.00 -1.94 4.08 
MA(2) 
  Low Med High Low-High 
Small 5.18 4.87 4.39 2.95 
Med 1.16 1.34 1.94 -1.17 
Big -0.45 -0.63 -2.16 3.58 
MA(4) 
  Low Med High Low-High 
Small 5.19 4.71 4.19 2.78 
Med 1.18 1.33 1.68 -0.66 
Big -0.45 -0.64 -1.83 2.97 
MA(10) 
  Low Med High Low-High 
Small 4.98 4.40 3.32 2.80 
Med 1.01 1.16 1.44 -0.47 
Big -0.08   -0.39 -1.39   2.76 
MA(20) 
  Low  Med High  Low-High 
Small 3.94  3.10 2.29   2.35 
Med 0.43  0.47 0.71  -0.31 
Big 0.10  -0.43 -1.14   2.56 
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Table 11: Volume and technical trading indicators   
 
This table presents regressions of the form:  

Δ log(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑋𝑋𝑡𝑡 + 𝑐𝑐 ⋅ |rt|+ 𝜖𝜖𝑡𝑡 , 

Δ log(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑋𝑋𝑡𝑡 + 𝑐𝑐 ⋅ |rt| +  𝑑𝑑 ⋅ Δ log(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 , 

where 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒𝑡𝑡 denotes the trading volume in Bitcoin on day 𝑡𝑡, |𝑟𝑟𝑡𝑡| denotes the absolute return on Bitcoin on day 
𝑡𝑡, and 𝑋𝑋𝑡𝑡 denotes one of two predictors. The second equation introduces lagged volume to accommodate for possible 
serial correlation. In column (1), 𝑋𝑋𝑡𝑡 is the sum �∑ �Δ𝑆𝑆𝐿𝐿,𝑡𝑡�𝐿𝐿 � of the absolute turnovers �Δ𝑆𝑆𝐿𝐿,𝑡𝑡� from each of the 
MA(𝐿𝐿) strategies. In column (2), 𝑋𝑋𝑡𝑡 is the cross-sectional standard deviation �𝜎𝜎𝐿𝐿�Δ𝑆𝑆𝐿𝐿,𝑡𝑡�� of Δ𝑆𝑆𝐿𝐿,𝑡𝑡, a measure of 
the “disagreement” among technical traders using the different MA strategies (𝐿𝐿 = 1, 2, 4, 10, or 20 weeks). In 
column (3), 𝑋𝑋𝑡𝑡 includes ∑ �Δ𝑆𝑆𝐿𝐿,𝑡𝑡�𝐿𝐿  and 𝜎𝜎𝐿𝐿�Δ𝑆𝑆𝐿𝐿,𝑡𝑡�. The sample is 12/27/2013–6/30/2018 (𝑛𝑛=1,647). 
Heteroskedasticity-robust t-statistics are in parentheses. 
 
Panel A: Determinants of Volume, without controlling for lagged volume 
    (1)    (2)    (3) 

∑ �|Δ𝑆𝑆𝐿𝐿,𝑡𝑡|�𝐿𝐿   0.03    0.07 

 (4.38)   (1.47) 
𝜎𝜎𝐿𝐿�Δ𝑆𝑆𝐿𝐿,𝑡𝑡�   0.15   0.05 
  (3.65)  (3.46) 
|𝑟𝑟𝑡𝑡|  4.90 5.03   4.73 
 (11.94) (11.76)  (11.58) 
Adj-𝑅𝑅2  0.17 0.16   0.17 

Panel B:   Determinants of Volume, controlling for lagged Volume 
    (1)   (2)   (3) 
∑ �|Δ𝑆𝑆𝐿𝐿,𝑡𝑡|�𝐿𝐿    0.03  0.04 
 (3.56)  (3.85) 
𝜎𝜎𝐿𝐿�Δ𝑆𝑆𝐿𝐿,𝑡𝑡�   0.12 0.16 
  (2.78) (1.80) 
|𝑟𝑟𝑡𝑡|   5.07 5.18 5.04 
 (13.05) (12.91) (12.69) 
Δ log(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)𝑡𝑡−1  -0.23 -0.23 -0.23 
 (10.13) (-10.21) (10.81) 
Adj-𝑅𝑅2  0.22 0.22 0.22 
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